模块化语言产品线:概念、工具和分析

IF 2 3区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Juan de Lara, Esther Guerra, Paolo Bottoni
{"title":"模块化语言产品线:概念、工具和分析","authors":"Juan de Lara, Esther Guerra, Paolo Bottoni","doi":"10.1007/s10270-024-01179-9","DOIUrl":null,"url":null,"abstract":"<p>Modelling languages are intensively used in paradigms like model-driven engineering to automate all tasks of the development process. These languages may have variants, in which case the need arises to deal with language families rather than with individual languages. However, specifying the syntax and semantics of each language variant separately in an enumerative way is costly, hinders reuse across variants, and may yield inconsistent semantics between variants. Hence, we propose a novel, modular and compositional approach to describing product lines of modelling languages. It enables the incremental definition of language families by means of modules comprising meta-model fragments, graph transformation rules, and rule extensions. Language variants are configured by selecting the desired modules, which entails the composition of a language meta-model and a set of rules defining its semantics. This paper describes: a theory for checking well-formedness, instantiability, and consistent semantics of all languages within the family; an implementation as an Eclipse plugin; and an evaluation reporting drastic specification size and analysis time reduction in comparison to an enumerative approach.\n</p>","PeriodicalId":49507,"journal":{"name":"Software and Systems Modeling","volume":"20 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular language product lines: concept, tool and analysis\",\"authors\":\"Juan de Lara, Esther Guerra, Paolo Bottoni\",\"doi\":\"10.1007/s10270-024-01179-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modelling languages are intensively used in paradigms like model-driven engineering to automate all tasks of the development process. These languages may have variants, in which case the need arises to deal with language families rather than with individual languages. However, specifying the syntax and semantics of each language variant separately in an enumerative way is costly, hinders reuse across variants, and may yield inconsistent semantics between variants. Hence, we propose a novel, modular and compositional approach to describing product lines of modelling languages. It enables the incremental definition of language families by means of modules comprising meta-model fragments, graph transformation rules, and rule extensions. Language variants are configured by selecting the desired modules, which entails the composition of a language meta-model and a set of rules defining its semantics. This paper describes: a theory for checking well-formedness, instantiability, and consistent semantics of all languages within the family; an implementation as an Eclipse plugin; and an evaluation reporting drastic specification size and analysis time reduction in comparison to an enumerative approach.\\n</p>\",\"PeriodicalId\":49507,\"journal\":{\"name\":\"Software and Systems Modeling\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software and Systems Modeling\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10270-024-01179-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software and Systems Modeling","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10270-024-01179-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

建模语言被广泛应用于模型驱动工程等范例中,以实现开发过程中所有任务的自动化。这些语言可能有变体,在这种情况下,就需要处理语言族而不是单个语言。然而,以枚举的方式分别指定每种语言变体的语法和语义不仅成本高昂,而且会妨碍不同变体之间的重复使用,并可能导致不同变体之间的语义不一致。因此,我们提出了一种新颖的模块化组合方法来描述建模语言的产品线。该方法通过由元模型片段、图转换规则和规则扩展组成的模块,实现了语言族的增量定义。通过选择所需的模块来配置语言变体,这就需要组成语言元模型和一组定义其语义的规则。本文介绍了:检查族内所有语言的良好形成性、可实例化性和一致语义的理论;作为 Eclipse 插件的实现;以及与枚举法相比大幅减少规范大小和分析时间的评估报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modular language product lines: concept, tool and analysis

Modular language product lines: concept, tool and analysis

Modelling languages are intensively used in paradigms like model-driven engineering to automate all tasks of the development process. These languages may have variants, in which case the need arises to deal with language families rather than with individual languages. However, specifying the syntax and semantics of each language variant separately in an enumerative way is costly, hinders reuse across variants, and may yield inconsistent semantics between variants. Hence, we propose a novel, modular and compositional approach to describing product lines of modelling languages. It enables the incremental definition of language families by means of modules comprising meta-model fragments, graph transformation rules, and rule extensions. Language variants are configured by selecting the desired modules, which entails the composition of a language meta-model and a set of rules defining its semantics. This paper describes: a theory for checking well-formedness, instantiability, and consistent semantics of all languages within the family; an implementation as an Eclipse plugin; and an evaluation reporting drastic specification size and analysis time reduction in comparison to an enumerative approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software and Systems Modeling
Software and Systems Modeling 工程技术-计算机:软件工程
CiteScore
6.00
自引率
20.00%
发文量
104
审稿时长
>12 weeks
期刊介绍: We invite authors to submit papers that discuss and analyze research challenges and experiences pertaining to software and system modeling languages, techniques, tools, practices and other facets. The following are some of the topic areas that are of special interest, but the journal publishes on a wide range of software and systems modeling concerns: Domain-specific models and modeling standards; Model-based testing techniques; Model-based simulation techniques; Formal syntax and semantics of modeling languages such as the UML; Rigorous model-based analysis; Model composition, refinement and transformation; Software Language Engineering; Modeling Languages in Science and Engineering; Language Adaptation and Composition; Metamodeling techniques; Measuring quality of models and languages; Ontological approaches to model engineering; Generating test and code artifacts from models; Model synthesis; Methodology; Model development tool environments; Modeling Cyberphysical Systems; Data intensive modeling; Derivation of explicit models from data; Case studies and experience reports with significant modeling lessons learned; Comparative analyses of modeling languages and techniques; Scientific assessment of modeling practices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信