预测水泥-砂加固软粘土非收缩抗压强度的微观理论模型

IF 2.1 4区 工程技术
Yizhao Wang, Wenfeng Bai, Zhili Li, Xing Min, Lu Zhang, Deluan Feng
{"title":"预测水泥-砂加固软粘土非收缩抗压强度的微观理论模型","authors":"Yizhao Wang, Wenfeng Bai, Zhili Li, Xing Min, Lu Zhang, Deluan Feng","doi":"10.1177/16878132241253399","DOIUrl":null,"url":null,"abstract":"Cement-sand reinforced soft clay (C-SRSC) is a complex multiphase geomaterial. Its strength is determined by the physical properties of the internal multiphase substances and the coupling mechanical response between various phases of substances. By considering the effect of the particle size and content of sand particles on the unconfined compressive strength (UCS) and failure mechanism of C-SRSC, the C-SRSC is divided into two phases of the cement soil matrix and sand particles to construct a micro cell model of C-SRSC. Based on the strain gradient theory, the theoretical model of the UCS of C-SRSC based on the physical mechanism at the microscale is derived. Forty five groups of UCS tests were conducted to analyze the effect of sand particle size and content on the UCS of C-SRSC, and to calculate the theoretical model parameters. The results show that the UCS of C-SRSC increases with increasing curing age, cement content, and sand particle content, and decreases with the increasing sand particle size. The theoretical model of the UCS of C-SRSC based on physical mechanism initially verified the consistency of the experimental and theoretical results.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"68 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A micro-theoretical model for predicting the unconfined compressive strength of cement-sand reinforced soft clay\",\"authors\":\"Yizhao Wang, Wenfeng Bai, Zhili Li, Xing Min, Lu Zhang, Deluan Feng\",\"doi\":\"10.1177/16878132241253399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cement-sand reinforced soft clay (C-SRSC) is a complex multiphase geomaterial. Its strength is determined by the physical properties of the internal multiphase substances and the coupling mechanical response between various phases of substances. By considering the effect of the particle size and content of sand particles on the unconfined compressive strength (UCS) and failure mechanism of C-SRSC, the C-SRSC is divided into two phases of the cement soil matrix and sand particles to construct a micro cell model of C-SRSC. Based on the strain gradient theory, the theoretical model of the UCS of C-SRSC based on the physical mechanism at the microscale is derived. Forty five groups of UCS tests were conducted to analyze the effect of sand particle size and content on the UCS of C-SRSC, and to calculate the theoretical model parameters. The results show that the UCS of C-SRSC increases with increasing curing age, cement content, and sand particle content, and decreases with the increasing sand particle size. The theoretical model of the UCS of C-SRSC based on physical mechanism initially verified the consistency of the experimental and theoretical results.\",\"PeriodicalId\":7357,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132241253399\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241253399","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水泥-砂加固软粘土(C-SRSC)是一种复杂的多相土工材料。其强度由内部多相物质的物理性质和各相物质之间的耦合机械响应决定。通过考虑砂粒的粒径和含量对 C-SRSC 的无侧限抗压强度(UCS)和破坏机理的影响,将 C-SRSC 划分为水泥土基质和砂粒两相,构建了 C-SRSC 的微单元模型。以应变梯度理论为基础,推导出基于微尺度物理机制的 C-SRSC UCS 理论模型。进行了 45 组 UCS 试验,分析了砂粒粒径和含量对 C-SRSC UCS 的影响,并计算了理论模型参数。结果表明,C-SRSC 的 UCS 随固化龄期、水泥含量和砂粒含量的增加而增加,随砂粒粒径的增加而减少。基于物理机理的 C-SRSC UCS 理论模型初步验证了实验结果与理论结果的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A micro-theoretical model for predicting the unconfined compressive strength of cement-sand reinforced soft clay
Cement-sand reinforced soft clay (C-SRSC) is a complex multiphase geomaterial. Its strength is determined by the physical properties of the internal multiphase substances and the coupling mechanical response between various phases of substances. By considering the effect of the particle size and content of sand particles on the unconfined compressive strength (UCS) and failure mechanism of C-SRSC, the C-SRSC is divided into two phases of the cement soil matrix and sand particles to construct a micro cell model of C-SRSC. Based on the strain gradient theory, the theoretical model of the UCS of C-SRSC based on the physical mechanism at the microscale is derived. Forty five groups of UCS tests were conducted to analyze the effect of sand particle size and content on the UCS of C-SRSC, and to calculate the theoretical model parameters. The results show that the UCS of C-SRSC increases with increasing curing age, cement content, and sand particle content, and decreases with the increasing sand particle size. The theoretical model of the UCS of C-SRSC based on physical mechanism initially verified the consistency of the experimental and theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering Engineering-Mechanical Engineering
自引率
4.80%
发文量
353
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信