{"title":"抛物线 U(1)-Higgs 方程与二维平均曲率流","authors":"Davide Parise, Alessandro Pigati, Daniel Stern","doi":"10.1007/s00039-024-00684-9","DOIUrl":null,"url":null,"abstract":"<p>We develop the asymptotic analysis as <i>ε</i>→0 for the natural gradient flow of the self-dual <i>U</i>(1)-Higgs energies </p><span>$$ E_{\\varepsilon }(u,\\nabla )=\\int _{M}\\left (|\\nabla u|^{2}+ \\varepsilon ^{2}|F_{\\nabla }|^{2}+ \\frac{(1-|u|^{2})^{2}}{4\\varepsilon ^{2}}\\right ) $$</span><p> on Hermitian line bundles over closed manifolds (<i>M</i><sup><i>n</i></sup>,<i>g</i>) of dimension <i>n</i>≥3, showing that solutions converge in a measure-theoretic sense to codimension-two mean curvature flows—i.e., integral (<i>n</i>−2)-Brakke flows—generalizing results of (Pigati and Stern in Invent. Math. 223:1027–1095, 2021) from the stationary case. Given any integral (<i>n</i>−2)-cycle Γ<sub>0</sub> in <i>M</i>, these results can be used together with the convergence theory developed in (Parise et al. in Convergence of the self-dual <i>U</i>(1)-Yang–Mills–Higgs energies to the (<i>n</i>−2)-area functional, 2021, arXiv:2103.14615) to produce nontrivial integral Brakke flows starting at Γ<sub>0</sub> with additional structure, similar to those produced via Ilmanen’s elliptic regularization.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Parabolic U(1)-Higgs Equations and Codimension-Two Mean Curvature Flows\",\"authors\":\"Davide Parise, Alessandro Pigati, Daniel Stern\",\"doi\":\"10.1007/s00039-024-00684-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop the asymptotic analysis as <i>ε</i>→0 for the natural gradient flow of the self-dual <i>U</i>(1)-Higgs energies </p><span>$$ E_{\\\\varepsilon }(u,\\\\nabla )=\\\\int _{M}\\\\left (|\\\\nabla u|^{2}+ \\\\varepsilon ^{2}|F_{\\\\nabla }|^{2}+ \\\\frac{(1-|u|^{2})^{2}}{4\\\\varepsilon ^{2}}\\\\right ) $$</span><p> on Hermitian line bundles over closed manifolds (<i>M</i><sup><i>n</i></sup>,<i>g</i>) of dimension <i>n</i>≥3, showing that solutions converge in a measure-theoretic sense to codimension-two mean curvature flows—i.e., integral (<i>n</i>−2)-Brakke flows—generalizing results of (Pigati and Stern in Invent. Math. 223:1027–1095, 2021) from the stationary case. Given any integral (<i>n</i>−2)-cycle Γ<sub>0</sub> in <i>M</i>, these results can be used together with the convergence theory developed in (Parise et al. in Convergence of the self-dual <i>U</i>(1)-Yang–Mills–Higgs energies to the (<i>n</i>−2)-area functional, 2021, arXiv:2103.14615) to produce nontrivial integral Brakke flows starting at Γ<sub>0</sub> with additional structure, similar to those produced via Ilmanen’s elliptic regularization.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00684-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00684-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
on Hermitian line bundles over closed manifolds (Mn,g) of dimension n≥3, showing that solutions converge in a measure-theoretic sense to codimension-two mean curvature flows—i.e., integral (n−2)-Brakke flows—generalizing results of (Pigati and Stern in Invent. Math. 223:1027–1095, 2021) from the stationary case. Given any integral (n−2)-cycle Γ0 in M, these results can be used together with the convergence theory developed in (Parise et al. in Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the (n−2)-area functional, 2021, arXiv:2103.14615) to produce nontrivial integral Brakke flows starting at Γ0 with additional structure, similar to those produced via Ilmanen’s elliptic regularization.