抛物线 U(1)-Higgs 方程与二维平均曲率流

IF 2.4 1区 数学 Q1 MATHEMATICS
Davide Parise, Alessandro Pigati, Daniel Stern
{"title":"抛物线 U(1)-Higgs 方程与二维平均曲率流","authors":"Davide Parise, Alessandro Pigati, Daniel Stern","doi":"10.1007/s00039-024-00684-9","DOIUrl":null,"url":null,"abstract":"<p>We develop the asymptotic analysis as <i>ε</i>→0 for the natural gradient flow of the self-dual <i>U</i>(1)-Higgs energies </p><span>$$ E_{\\varepsilon }(u,\\nabla )=\\int _{M}\\left (|\\nabla u|^{2}+ \\varepsilon ^{2}|F_{\\nabla }|^{2}+ \\frac{(1-|u|^{2})^{2}}{4\\varepsilon ^{2}}\\right ) $$</span><p> on Hermitian line bundles over closed manifolds (<i>M</i><sup><i>n</i></sup>,<i>g</i>) of dimension <i>n</i>≥3, showing that solutions converge in a measure-theoretic sense to codimension-two mean curvature flows—i.e., integral (<i>n</i>−2)-Brakke flows—generalizing results of (Pigati and Stern in Invent. Math. 223:1027–1095, 2021) from the stationary case. Given any integral (<i>n</i>−2)-cycle Γ<sub>0</sub> in <i>M</i>, these results can be used together with the convergence theory developed in (Parise et al. in Convergence of the self-dual <i>U</i>(1)-Yang–Mills–Higgs energies to the (<i>n</i>−2)-area functional, 2021, arXiv:2103.14615) to produce nontrivial integral Brakke flows starting at Γ<sub>0</sub> with additional structure, similar to those produced via Ilmanen’s elliptic regularization.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"53 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Parabolic U(1)-Higgs Equations and Codimension-Two Mean Curvature Flows\",\"authors\":\"Davide Parise, Alessandro Pigati, Daniel Stern\",\"doi\":\"10.1007/s00039-024-00684-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop the asymptotic analysis as <i>ε</i>→0 for the natural gradient flow of the self-dual <i>U</i>(1)-Higgs energies </p><span>$$ E_{\\\\varepsilon }(u,\\\\nabla )=\\\\int _{M}\\\\left (|\\\\nabla u|^{2}+ \\\\varepsilon ^{2}|F_{\\\\nabla }|^{2}+ \\\\frac{(1-|u|^{2})^{2}}{4\\\\varepsilon ^{2}}\\\\right ) $$</span><p> on Hermitian line bundles over closed manifolds (<i>M</i><sup><i>n</i></sup>,<i>g</i>) of dimension <i>n</i>≥3, showing that solutions converge in a measure-theoretic sense to codimension-two mean curvature flows—i.e., integral (<i>n</i>−2)-Brakke flows—generalizing results of (Pigati and Stern in Invent. Math. 223:1027–1095, 2021) from the stationary case. Given any integral (<i>n</i>−2)-cycle Γ<sub>0</sub> in <i>M</i>, these results can be used together with the convergence theory developed in (Parise et al. in Convergence of the self-dual <i>U</i>(1)-Yang–Mills–Higgs energies to the (<i>n</i>−2)-area functional, 2021, arXiv:2103.14615) to produce nontrivial integral Brakke flows starting at Γ<sub>0</sub> with additional structure, similar to those produced via Ilmanen’s elliptic regularization.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00684-9\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00684-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对自双 U(1)-Higgs 能量的自然梯度流 $$ E_{\varepsilon }(u.)进行了 ε→0 的渐近分析、\nabla )=\int _{M}\left (|\nabla u|^{2}+ \varepsilon ^{2}|F_{\nabla }|^{2}+ \frac{(1-|u|^{2})^{2}}{4\varepsilon ^{2}}\right ) $$ 在封闭流形(Mn、g) 上的赫米线束上的 $$,表明解在度量理论意义上收敛于编码维数为 2 的平均曲率流--即.e.,223:1027-1095, 2021)的结果。给定 M 中的任何积分(n-2)循环Γ0,这些结果可以与(Parise 等人在《自双 U(1)-Yang-Mills-Higgs 能量向(n-2)面积函数的收敛》中,2021 年,arXiv:2103.14615)中发展的收敛理论一起使用,以产生从Γ0 开始的具有额外结构的非难积分布拉克流,类似于通过伊尔马宁的椭圆正则化产生的布拉克流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Parabolic U(1)-Higgs Equations and Codimension-Two Mean Curvature Flows

The Parabolic U(1)-Higgs Equations and Codimension-Two Mean Curvature Flows

We develop the asymptotic analysis as ε→0 for the natural gradient flow of the self-dual U(1)-Higgs energies

$$ E_{\varepsilon }(u,\nabla )=\int _{M}\left (|\nabla u|^{2}+ \varepsilon ^{2}|F_{\nabla }|^{2}+ \frac{(1-|u|^{2})^{2}}{4\varepsilon ^{2}}\right ) $$

on Hermitian line bundles over closed manifolds (Mn,g) of dimension n≥3, showing that solutions converge in a measure-theoretic sense to codimension-two mean curvature flows—i.e., integral (n−2)-Brakke flows—generalizing results of (Pigati and Stern in Invent. Math. 223:1027–1095, 2021) from the stationary case. Given any integral (n−2)-cycle Γ0 in M, these results can be used together with the convergence theory developed in (Parise et al. in Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the (n−2)-area functional, 2021, arXiv:2103.14615) to produce nontrivial integral Brakke flows starting at Γ0 with additional structure, similar to those produced via Ilmanen’s elliptic regularization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信