{"title":"高阶晶格作用的刚性定理","authors":"Homin Lee","doi":"10.1007/s00039-024-00683-w","DOIUrl":null,"url":null,"abstract":"<p>Let Γ be a weakly irreducible lattice in a higher rank semisimple algebraic Lie group <i>G</i> without property (T) such as <span>\\(\\mathrm {SL}_{2}({\\mathbb{Z}}[\\sqrt{2}])\\)</span> in <span>\\(\\mathrm {SL}_{2}({\\mathbb{R}})\\times \\mathrm {SL}_{2}({\\mathbb{R}})\\)</span>.</p><p>In this paper, for such Γ, we prove a cocycle superrigidity, <i>Dynamical cocycle superrigidity</i>, for Γ-actions under <i>L</i><sup>2</sup> integrability and irreducibility assumptions. It gives a similar result to Zimmer’s cocycle superrigidity, so we can apply it instead of Zimmer’s cocycle superrigidity in many situations. For instance, in this paper, we obtain global rigidity of Anosov Γ-actions on nilmanifolds under the irreducibility assumption on a fully supported invariant measure.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"32 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity Theorems for Higher Rank Lattice Actions\",\"authors\":\"Homin Lee\",\"doi\":\"10.1007/s00039-024-00683-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let Γ be a weakly irreducible lattice in a higher rank semisimple algebraic Lie group <i>G</i> without property (T) such as <span>\\\\(\\\\mathrm {SL}_{2}({\\\\mathbb{Z}}[\\\\sqrt{2}])\\\\)</span> in <span>\\\\(\\\\mathrm {SL}_{2}({\\\\mathbb{R}})\\\\times \\\\mathrm {SL}_{2}({\\\\mathbb{R}})\\\\)</span>.</p><p>In this paper, for such Γ, we prove a cocycle superrigidity, <i>Dynamical cocycle superrigidity</i>, for Γ-actions under <i>L</i><sup>2</sup> integrability and irreducibility assumptions. It gives a similar result to Zimmer’s cocycle superrigidity, so we can apply it instead of Zimmer’s cocycle superrigidity in many situations. For instance, in this paper, we obtain global rigidity of Anosov Γ-actions on nilmanifolds under the irreducibility assumption on a fully supported invariant measure.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00683-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00683-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 Γ 是一个高阶半简单代数 Lie 群 G 中的弱不可还原晶格,不带性质 (T),如\(\mathrm {SL}_{2}({\mathbb{Z}}[\sqrt{2}])\) in \(\mathrm {SL}_{2}({\mathbb{R}})\times\mathrm {SL}_{2}({\mathbb{R}})\).在本文中,对于这样的 Γ,我们证明了在 L2 可整性和不可还原性假设下的Γ作用的循环超稳定性,即动态循环超稳定性(Dynamical cocycle superrigidity)。它给出了与齐美尔循环超刚度相似的结果,因此我们可以在很多情况下用它来代替齐美尔循环超刚度。例如,在本文中,我们在全支持不变度量的不可还原性假设下,得到了无芒物上阿诺索夫Γ作用的全局刚性。
Let Γ be a weakly irreducible lattice in a higher rank semisimple algebraic Lie group G without property (T) such as \(\mathrm {SL}_{2}({\mathbb{Z}}[\sqrt{2}])\) in \(\mathrm {SL}_{2}({\mathbb{R}})\times \mathrm {SL}_{2}({\mathbb{R}})\).
In this paper, for such Γ, we prove a cocycle superrigidity, Dynamical cocycle superrigidity, for Γ-actions under L2 integrability and irreducibility assumptions. It gives a similar result to Zimmer’s cocycle superrigidity, so we can apply it instead of Zimmer’s cocycle superrigidity in many situations. For instance, in this paper, we obtain global rigidity of Anosov Γ-actions on nilmanifolds under the irreducibility assumption on a fully supported invariant measure.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.