{"title":"高阶晶格作用的刚性定理","authors":"Homin Lee","doi":"10.1007/s00039-024-00683-w","DOIUrl":null,"url":null,"abstract":"<p>Let Γ be a weakly irreducible lattice in a higher rank semisimple algebraic Lie group <i>G</i> without property (T) such as <span>\\(\\mathrm {SL}_{2}({\\mathbb{Z}}[\\sqrt{2}])\\)</span> in <span>\\(\\mathrm {SL}_{2}({\\mathbb{R}})\\times \\mathrm {SL}_{2}({\\mathbb{R}})\\)</span>.</p><p>In this paper, for such Γ, we prove a cocycle superrigidity, <i>Dynamical cocycle superrigidity</i>, for Γ-actions under <i>L</i><sup>2</sup> integrability and irreducibility assumptions. It gives a similar result to Zimmer’s cocycle superrigidity, so we can apply it instead of Zimmer’s cocycle superrigidity in many situations. For instance, in this paper, we obtain global rigidity of Anosov Γ-actions on nilmanifolds under the irreducibility assumption on a fully supported invariant measure.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity Theorems for Higher Rank Lattice Actions\",\"authors\":\"Homin Lee\",\"doi\":\"10.1007/s00039-024-00683-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let Γ be a weakly irreducible lattice in a higher rank semisimple algebraic Lie group <i>G</i> without property (T) such as <span>\\\\(\\\\mathrm {SL}_{2}({\\\\mathbb{Z}}[\\\\sqrt{2}])\\\\)</span> in <span>\\\\(\\\\mathrm {SL}_{2}({\\\\mathbb{R}})\\\\times \\\\mathrm {SL}_{2}({\\\\mathbb{R}})\\\\)</span>.</p><p>In this paper, for such Γ, we prove a cocycle superrigidity, <i>Dynamical cocycle superrigidity</i>, for Γ-actions under <i>L</i><sup>2</sup> integrability and irreducibility assumptions. It gives a similar result to Zimmer’s cocycle superrigidity, so we can apply it instead of Zimmer’s cocycle superrigidity in many situations. For instance, in this paper, we obtain global rigidity of Anosov Γ-actions on nilmanifolds under the irreducibility assumption on a fully supported invariant measure.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00683-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00683-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
让 Γ 是一个高阶半简单代数 Lie 群 G 中的弱不可还原晶格,不带性质 (T),如\(\mathrm {SL}_{2}({\mathbb{Z}}[\sqrt{2}])\) in \(\mathrm {SL}_{2}({\mathbb{R}})\times\mathrm {SL}_{2}({\mathbb{R}})\).在本文中,对于这样的 Γ,我们证明了在 L2 可整性和不可还原性假设下的Γ作用的循环超稳定性,即动态循环超稳定性(Dynamical cocycle superrigidity)。它给出了与齐美尔循环超刚度相似的结果,因此我们可以在很多情况下用它来代替齐美尔循环超刚度。例如,在本文中,我们在全支持不变度量的不可还原性假设下,得到了无芒物上阿诺索夫Γ作用的全局刚性。
Let Γ be a weakly irreducible lattice in a higher rank semisimple algebraic Lie group G without property (T) such as \(\mathrm {SL}_{2}({\mathbb{Z}}[\sqrt{2}])\) in \(\mathrm {SL}_{2}({\mathbb{R}})\times \mathrm {SL}_{2}({\mathbb{R}})\).
In this paper, for such Γ, we prove a cocycle superrigidity, Dynamical cocycle superrigidity, for Γ-actions under L2 integrability and irreducibility assumptions. It gives a similar result to Zimmer’s cocycle superrigidity, so we can apply it instead of Zimmer’s cocycle superrigidity in many situations. For instance, in this paper, we obtain global rigidity of Anosov Γ-actions on nilmanifolds under the irreducibility assumption on a fully supported invariant measure.