可识别性、公度空间中的 KL 特性和次梯度曲线

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
A. S. Lewis, Tonghua Tian
{"title":"可识别性、公度空间中的 KL 特性和次梯度曲线","authors":"A. S. Lewis, Tonghua Tian","doi":"10.1007/s10208-024-09652-z","DOIUrl":null,"url":null,"abstract":"<p>Identifiability, and the closely related idea of partial smoothness, unify classical active set methods and more general notions of solution structure. Diverse optimization algorithms generate iterates in discrete time that are eventually confined to identifiable sets. We present two fresh perspectives on identifiability. The first distills the notion to a simple metric property, applicable not just in Euclidean settings but to optimization over manifolds and beyond; the second reveals analogous continuous-time behavior for subgradient descent curves. The Kurdyka–Łojasiewicz property typically governs convergence in both discrete and continuous time: we explore its interplay with identifiability.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifiability, the KL Property in Metric Spaces, and Subgradient Curves\",\"authors\":\"A. S. Lewis, Tonghua Tian\",\"doi\":\"10.1007/s10208-024-09652-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifiability, and the closely related idea of partial smoothness, unify classical active set methods and more general notions of solution structure. Diverse optimization algorithms generate iterates in discrete time that are eventually confined to identifiable sets. We present two fresh perspectives on identifiability. The first distills the notion to a simple metric property, applicable not just in Euclidean settings but to optimization over manifolds and beyond; the second reveals analogous continuous-time behavior for subgradient descent curves. The Kurdyka–Łojasiewicz property typically governs convergence in both discrete and continuous time: we explore its interplay with identifiability.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10208-024-09652-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09652-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

可识别性以及与之密切相关的部分平滑性概念,统一了经典的有源集方法和更普遍的解结构概念。各种优化算法会在离散时间内产生迭代,而这些迭代最终会局限于可识别集。我们对可识别性提出了两个全新的视角。第一种观点将这一概念提炼为一个简单的度量属性,不仅适用于欧几里得环境,还适用于流形及流形以外的优化;第二种观点揭示了子梯度下降曲线的类似连续时间行为。Kurdyka-Łojasiewicz 属性通常支配着离散时间和连续时间的收敛性:我们探讨了它与可识别性之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifiability, the KL Property in Metric Spaces, and Subgradient Curves

Identifiability, the KL Property in Metric Spaces, and Subgradient Curves

Identifiability, and the closely related idea of partial smoothness, unify classical active set methods and more general notions of solution structure. Diverse optimization algorithms generate iterates in discrete time that are eventually confined to identifiable sets. We present two fresh perspectives on identifiability. The first distills the notion to a simple metric property, applicable not just in Euclidean settings but to optimization over manifolds and beyond; the second reveals analogous continuous-time behavior for subgradient descent curves. The Kurdyka–Łojasiewicz property typically governs convergence in both discrete and continuous time: we explore its interplay with identifiability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信