利用全局-本地场景增强型社会互动图网络进行多机器人轨迹预测

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Xuanqi Lin, Yong Zhang, Shun Wang, Xinglin Piao, Baocai Yin
{"title":"利用全局-本地场景增强型社会互动图网络进行多机器人轨迹预测","authors":"Xuanqi Lin,&nbsp;Yong Zhang,&nbsp;Shun Wang,&nbsp;Xinglin Piao,&nbsp;Baocai Yin","doi":"10.1002/cav.2237","DOIUrl":null,"url":null,"abstract":"<p>Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning-based models face challenges in effectively utilizing scene information and accurately modeling agent interactions, largely due to the complexity and uncertainty of real-world scenarios. To mitigate these challenges, this study presents a novel multiagent trajectory prediction model, termed the global-local scene-enhanced social interaction graph network (GLSESIGN), which incorporates two pivotal strategies: global-local scene information utilization and a social adaptive attention graph network. The model hierarchically learns scene information relevant to multiple intelligent agents, thereby enhancing the understanding of complex scenes. Additionally, it adaptively captures social interactions, improving adaptability to diverse interaction patterns through sparse graph structures. This model not only improves the understanding of complex scenes but also accurately predicts future trajectories of multiple intelligent agents by flexibly modeling intricate interactions. Experimental validation on public datasets substantiates the efficacy of the proposed model. This research offers a novel model to address the complexity and uncertainty in multiagent trajectory prediction, providing more accurate predictive support in practical application scenarios.</p>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiagent trajectory prediction with global-local scene-enhanced social interaction graph network\",\"authors\":\"Xuanqi Lin,&nbsp;Yong Zhang,&nbsp;Shun Wang,&nbsp;Xinglin Piao,&nbsp;Baocai Yin\",\"doi\":\"10.1002/cav.2237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning-based models face challenges in effectively utilizing scene information and accurately modeling agent interactions, largely due to the complexity and uncertainty of real-world scenarios. To mitigate these challenges, this study presents a novel multiagent trajectory prediction model, termed the global-local scene-enhanced social interaction graph network (GLSESIGN), which incorporates two pivotal strategies: global-local scene information utilization and a social adaptive attention graph network. The model hierarchically learns scene information relevant to multiple intelligent agents, thereby enhancing the understanding of complex scenes. Additionally, it adaptively captures social interactions, improving adaptability to diverse interaction patterns through sparse graph structures. This model not only improves the understanding of complex scenes but also accurately predicts future trajectories of multiple intelligent agents by flexibly modeling intricate interactions. Experimental validation on public datasets substantiates the efficacy of the proposed model. This research offers a novel model to address the complexity and uncertainty in multiagent trajectory prediction, providing more accurate predictive support in practical application scenarios.</p>\",\"PeriodicalId\":50645,\"journal\":{\"name\":\"Computer Animation and Virtual Worlds\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Animation and Virtual Worlds\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cav.2237\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.2237","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

轨迹预测对于自动驾驶、行为分析和服务机器人等智能自主系统至关重要。深度学习因其对轨迹数据的卓越建模能力而成为主流技术。然而,基于深度学习的模型在有效利用场景信息和准确建模代理互动方面面临挑战,这主要是由于现实世界场景的复杂性和不确定性。为了缓解这些挑战,本研究提出了一种新型多代理轨迹预测模型,即全局-本地场景增强社会交互图网络(GLSESIGN),它融合了两种关键策略:全局-本地场景信息利用和社会自适应注意力图网络。该模型分层学习与多个智能代理相关的场景信息,从而增强对复杂场景的理解。此外,它还能自适应地捕捉社会互动,通过稀疏图结构提高对各种互动模式的适应性。该模型不仅能提高对复杂场景的理解,还能通过对错综复杂的互动进行灵活建模,准确预测多个智能代理的未来轨迹。公共数据集的实验验证证明了所提模型的有效性。这项研究为解决多智能体轨迹预测中的复杂性和不确定性问题提供了一种新型模型,为实际应用场景提供了更准确的预测支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiagent trajectory prediction with global-local scene-enhanced social interaction graph network

Multiagent trajectory prediction with global-local scene-enhanced social interaction graph network

Trajectory prediction is essential for intelligent autonomous systems like autonomous driving, behavior analysis, and service robotics. Deep learning has emerged as the predominant technique due to its superior modeling capability for trajectory data. However, deep learning-based models face challenges in effectively utilizing scene information and accurately modeling agent interactions, largely due to the complexity and uncertainty of real-world scenarios. To mitigate these challenges, this study presents a novel multiagent trajectory prediction model, termed the global-local scene-enhanced social interaction graph network (GLSESIGN), which incorporates two pivotal strategies: global-local scene information utilization and a social adaptive attention graph network. The model hierarchically learns scene information relevant to multiple intelligent agents, thereby enhancing the understanding of complex scenes. Additionally, it adaptively captures social interactions, improving adaptability to diverse interaction patterns through sparse graph structures. This model not only improves the understanding of complex scenes but also accurately predicts future trajectories of multiple intelligent agents by flexibly modeling intricate interactions. Experimental validation on public datasets substantiates the efficacy of the proposed model. This research offers a novel model to address the complexity and uncertainty in multiagent trajectory prediction, providing more accurate predictive support in practical application scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Animation and Virtual Worlds
Computer Animation and Virtual Worlds 工程技术-计算机:软件工程
CiteScore
2.20
自引率
0.00%
发文量
90
审稿时长
6-12 weeks
期刊介绍: With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信