{"title":"通过热旋转锻造直接固结氧化物分散强化合金 通过热旋转锻造直接固结氧化物分散强化合金","authors":"L. Kunčická, J. Svoboda","doi":"10.1002/mawe.202400023","DOIUrl":null,"url":null,"abstract":"<p>Steels strengthened by alloying elements and precipitates typically maintain their enhanced properties up to the ferrite-austenite transformation. However, oxide dispersion strengthened ferritic steels are creep resistant even at much higher temperatures given by dispersions of nanosized oxides. To ensure homogeneous dispersion of the oxides, powder metallurgy is used for preparation of the original material. The presented study investigates the effects of direct consolidation of powder of ferritic steel strengthened with yttrium oxide nanoparticles. The powders were mechanically alloyed and sealed into evacuated steel containers, which were subjected to gradual hot consolidation via the industrially applicable intensive plastic deformation method of rotary swaging. Investigations assessing the effects of several reduction ratios showed that the direct consolidation of the oxide dispersion strengthened steel was successful – in the macroscale – at the swaging ratio of 1.03; the quality of consolidation further increased with increasing swaging ratio. At the swaging ratio of 1.83, the consolidated bulk material featured ultra-fine grains characterized with high angle grain boundaries, homogeneous dispersion of oxide precipitates, and the average Vickers microhardness of 706.6 HV 1.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 5","pages":"588-597"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct consolidation of an oxide dispersion strengthened alloy by hot rotary swaging\\n Direkte Verfestigung einer oxiddispersionsgehärteten Legierung durch Warmdrehkneten\",\"authors\":\"L. Kunčická, J. Svoboda\",\"doi\":\"10.1002/mawe.202400023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Steels strengthened by alloying elements and precipitates typically maintain their enhanced properties up to the ferrite-austenite transformation. However, oxide dispersion strengthened ferritic steels are creep resistant even at much higher temperatures given by dispersions of nanosized oxides. To ensure homogeneous dispersion of the oxides, powder metallurgy is used for preparation of the original material. The presented study investigates the effects of direct consolidation of powder of ferritic steel strengthened with yttrium oxide nanoparticles. The powders were mechanically alloyed and sealed into evacuated steel containers, which were subjected to gradual hot consolidation via the industrially applicable intensive plastic deformation method of rotary swaging. Investigations assessing the effects of several reduction ratios showed that the direct consolidation of the oxide dispersion strengthened steel was successful – in the macroscale – at the swaging ratio of 1.03; the quality of consolidation further increased with increasing swaging ratio. At the swaging ratio of 1.83, the consolidated bulk material featured ultra-fine grains characterized with high angle grain boundaries, homogeneous dispersion of oxide precipitates, and the average Vickers microhardness of 706.6 HV 1.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"55 5\",\"pages\":\"588-597\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400023\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct consolidation of an oxide dispersion strengthened alloy by hot rotary swaging
Direkte Verfestigung einer oxiddispersionsgehärteten Legierung durch Warmdrehkneten
Steels strengthened by alloying elements and precipitates typically maintain their enhanced properties up to the ferrite-austenite transformation. However, oxide dispersion strengthened ferritic steels are creep resistant even at much higher temperatures given by dispersions of nanosized oxides. To ensure homogeneous dispersion of the oxides, powder metallurgy is used for preparation of the original material. The presented study investigates the effects of direct consolidation of powder of ferritic steel strengthened with yttrium oxide nanoparticles. The powders were mechanically alloyed and sealed into evacuated steel containers, which were subjected to gradual hot consolidation via the industrially applicable intensive plastic deformation method of rotary swaging. Investigations assessing the effects of several reduction ratios showed that the direct consolidation of the oxide dispersion strengthened steel was successful – in the macroscale – at the swaging ratio of 1.03; the quality of consolidation further increased with increasing swaging ratio. At the swaging ratio of 1.83, the consolidated bulk material featured ultra-fine grains characterized with high angle grain boundaries, homogeneous dispersion of oxide precipitates, and the average Vickers microhardness of 706.6 HV 1.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.