Qingbo Hao , Chundong Wang , Yingyuan Xiao , Hao Lin
{"title":"用于多行为推荐的基于简约的高阶增强图神经网络","authors":"Qingbo Hao , Chundong Wang , Yingyuan Xiao , Hao Lin","doi":"10.1016/j.ipm.2024.103790","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-behavior recommendations effectively integrate various types of behaviors and have been proven to enhance recommendation performance. However, existing researches primarily focus on distinguishing between various behaviors, neglecting the exploration of common representations within each behavior that might reflect individual preferences from different perspectives. Meanwhile, interactions within each behavior remain sparse; how to learn effective information from limited data poses a significant challenge. In this study, we propose a simplices-based higher-order enhancement graph neural network for multi-behavior recommendations, HEM-GNN. Specifically, we adopt a supervised method to distinguish the importance of different behaviors and perform inter-behavior representation learning. Meanwhile, for each behavior, we define implicit relationships to mitigate data sparsity, and then aggregate information from nodes within simplices to extract their higher-order commonalities. Finally, HEM-GNN leverages these representations to make recommendations. Through experiments on three public datasets (Taobao, Beibei, and IJCAI), HEM-GNN demonstrates better performance compared to 10 baseline algorithms. It outperforms state-of-the-art models by margins ranging from 8.99% to 10.58% in HR@<span><math><mi>K</mi></math></span> and 8.18% to 9.69% in NDCG@<span><math><mi>K</mi></math></span>, highlighting the significance of higher-order features in multi-behavior recommendations. The model and datasets are released at: <span>https://github.com/SamuelZack/MultiRec</span><svg><path></path></svg>.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplices-based higher-order enhancement graph neural network for multi-behavior recommendation\",\"authors\":\"Qingbo Hao , Chundong Wang , Yingyuan Xiao , Hao Lin\",\"doi\":\"10.1016/j.ipm.2024.103790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-behavior recommendations effectively integrate various types of behaviors and have been proven to enhance recommendation performance. However, existing researches primarily focus on distinguishing between various behaviors, neglecting the exploration of common representations within each behavior that might reflect individual preferences from different perspectives. Meanwhile, interactions within each behavior remain sparse; how to learn effective information from limited data poses a significant challenge. In this study, we propose a simplices-based higher-order enhancement graph neural network for multi-behavior recommendations, HEM-GNN. Specifically, we adopt a supervised method to distinguish the importance of different behaviors and perform inter-behavior representation learning. Meanwhile, for each behavior, we define implicit relationships to mitigate data sparsity, and then aggregate information from nodes within simplices to extract their higher-order commonalities. Finally, HEM-GNN leverages these representations to make recommendations. Through experiments on three public datasets (Taobao, Beibei, and IJCAI), HEM-GNN demonstrates better performance compared to 10 baseline algorithms. It outperforms state-of-the-art models by margins ranging from 8.99% to 10.58% in HR@<span><math><mi>K</mi></math></span> and 8.18% to 9.69% in NDCG@<span><math><mi>K</mi></math></span>, highlighting the significance of higher-order features in multi-behavior recommendations. The model and datasets are released at: <span>https://github.com/SamuelZack/MultiRec</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030645732400150X\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030645732400150X","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Simplices-based higher-order enhancement graph neural network for multi-behavior recommendation
Multi-behavior recommendations effectively integrate various types of behaviors and have been proven to enhance recommendation performance. However, existing researches primarily focus on distinguishing between various behaviors, neglecting the exploration of common representations within each behavior that might reflect individual preferences from different perspectives. Meanwhile, interactions within each behavior remain sparse; how to learn effective information from limited data poses a significant challenge. In this study, we propose a simplices-based higher-order enhancement graph neural network for multi-behavior recommendations, HEM-GNN. Specifically, we adopt a supervised method to distinguish the importance of different behaviors and perform inter-behavior representation learning. Meanwhile, for each behavior, we define implicit relationships to mitigate data sparsity, and then aggregate information from nodes within simplices to extract their higher-order commonalities. Finally, HEM-GNN leverages these representations to make recommendations. Through experiments on three public datasets (Taobao, Beibei, and IJCAI), HEM-GNN demonstrates better performance compared to 10 baseline algorithms. It outperforms state-of-the-art models by margins ranging from 8.99% to 10.58% in HR@ and 8.18% to 9.69% in NDCG@, highlighting the significance of higher-order features in multi-behavior recommendations. The model and datasets are released at: https://github.com/SamuelZack/MultiRec.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.