DCTM:用于可识别主题提取的双对比主题模型

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Rui Wang , Peng Ren , Xing Liu , Shuyu Chang , Haiping Huang
{"title":"DCTM:用于可识别主题提取的双对比主题模型","authors":"Rui Wang ,&nbsp;Peng Ren ,&nbsp;Xing Liu ,&nbsp;Shuyu Chang ,&nbsp;Haiping Huang","doi":"10.1016/j.ipm.2024.103785","DOIUrl":null,"url":null,"abstract":"<div><p>The recent advanced Contrastive Neural Topic Model (CNTM) was proposed to tackle topic collapse through document-level contrastive learning. However, limited by its usage of the Logistic-Normal prior in topic space and document level contrastive learning, it is less capable of disentangling semantically similar topics. To address the limitation, we propose a novel Dual Contrastive Topic Model (DCTM) that utilizes the Dirichlet prior to capture interpretable patterns. Besides, it incorporates dual (document-level and topic-level) contrastive learning on the topic distribution matrix which helps generate discriminative topic representations and mine identifiable topics. Our proposed DCTM outperforms the state-of-the-art neural topic models in terms of topic coherence and diversity, which is verified by extensive experimentation on three publicly available text corpora. In detail, the proposed DCTM surpasses baselines on almost all the used topic coherence metrics (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>, NPMI for 20Newsgroups, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>, NPMI and UCI for Grolier and DBPedia), and it also obtains higher topic diversity with 1 datasets respectively. Moreover, when performing text clustering, DCTM also achieves significant improvements, with observed increases of more than 1% (20Newsgroups) and 6% (DBPedia) in accuracy.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DCTM: Dual Contrastive Topic Model for identifiable topic extraction\",\"authors\":\"Rui Wang ,&nbsp;Peng Ren ,&nbsp;Xing Liu ,&nbsp;Shuyu Chang ,&nbsp;Haiping Huang\",\"doi\":\"10.1016/j.ipm.2024.103785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent advanced Contrastive Neural Topic Model (CNTM) was proposed to tackle topic collapse through document-level contrastive learning. However, limited by its usage of the Logistic-Normal prior in topic space and document level contrastive learning, it is less capable of disentangling semantically similar topics. To address the limitation, we propose a novel Dual Contrastive Topic Model (DCTM) that utilizes the Dirichlet prior to capture interpretable patterns. Besides, it incorporates dual (document-level and topic-level) contrastive learning on the topic distribution matrix which helps generate discriminative topic representations and mine identifiable topics. Our proposed DCTM outperforms the state-of-the-art neural topic models in terms of topic coherence and diversity, which is verified by extensive experimentation on three publicly available text corpora. In detail, the proposed DCTM surpasses baselines on almost all the used topic coherence metrics (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>, NPMI for 20Newsgroups, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span>, NPMI and UCI for Grolier and DBPedia), and it also obtains higher topic diversity with 1 datasets respectively. Moreover, when performing text clustering, DCTM also achieves significant improvements, with observed increases of more than 1% (20Newsgroups) and 6% (DBPedia) in accuracy.</p></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324001456\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324001456","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最近提出的高级对比神经主题模型(CNTM)通过文档级对比学习来解决主题坍塌问题。然而,受限于在主题空间中使用逻辑正态先验和文档级对比学习,它在分离语义相似主题方面的能力较弱。为了解决这一局限性,我们提出了一种新颖的双对比主题模型(DCTM),它利用 Dirichlet 先验来捕捉可解释的模式。此外,它还结合了对主题分布矩阵的双重(文档级和主题级)对比学习,有助于生成具有区分性的主题表征和挖掘可识别的主题。我们提出的 DCTM 在主题一致性和多样性方面优于最先进的神经主题模型,这一点在三个公开的文本语料库上进行了广泛的实验验证。具体来说,所提出的 DCTM 在几乎所有使用的主题一致性指标(20Newsgroups 的 CP、CA、NPMI,Grolier 和 DBPedia 的 CP、CA、NPMI 和 UCI)上都超过了基线,而且还分别在 1 个数据集上获得了更高的主题多样性。此外,在进行文本聚类时,DCTM 也取得了显著的改进,准确率分别提高了 1%(20Newsgroups)和 6%(DBPedia)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DCTM: Dual Contrastive Topic Model for identifiable topic extraction

The recent advanced Contrastive Neural Topic Model (CNTM) was proposed to tackle topic collapse through document-level contrastive learning. However, limited by its usage of the Logistic-Normal prior in topic space and document level contrastive learning, it is less capable of disentangling semantically similar topics. To address the limitation, we propose a novel Dual Contrastive Topic Model (DCTM) that utilizes the Dirichlet prior to capture interpretable patterns. Besides, it incorporates dual (document-level and topic-level) contrastive learning on the topic distribution matrix which helps generate discriminative topic representations and mine identifiable topics. Our proposed DCTM outperforms the state-of-the-art neural topic models in terms of topic coherence and diversity, which is verified by extensive experimentation on three publicly available text corpora. In detail, the proposed DCTM surpasses baselines on almost all the used topic coherence metrics (CP, CA, NPMI for 20Newsgroups, CP, CA, NPMI and UCI for Grolier and DBPedia), and it also obtains higher topic diversity with 1 datasets respectively. Moreover, when performing text clustering, DCTM also achieves significant improvements, with observed increases of more than 1% (20Newsgroups) and 6% (DBPedia) in accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信