{"title":"Spartin 是一种脂质转移蛋白,可促进脂滴的翻转。","authors":"Yaoyang Zhong, Tim P Levine","doi":"10.1177/25152564241255782","DOIUrl":null,"url":null,"abstract":"<p><p>One means by which cells reutilize neutral lipids stored in lipid droplets is to degrade them by autophagy. This process involves spartin, mutations of which cause the rare inherited disorder Troyer syndrome (or spastic paraplegia-20, SPG20). A recently published paper from the team led by Karin Reinsich (Yale) suggests that the molecular function of spartin and its unique highly conserved \"senescence\" domain is as a lipid transfer protein. Spartin binds to and transfers all lipid species found in lipid droplets, from phospholipids to triglycerides and sterol esters. This lipid transfer activity correlates with spartin's ability to sustain lipid droplet turnover. The senescence domain poses an intriguing question around the wide range of its cargoes, but intriguingly it has yet to yield up its secrets because attempts at crystallization failed and AlphaFold's prediction is unconvincing.</p>","PeriodicalId":101304,"journal":{"name":"Contact (Thousand Oaks (Ventura County, Calif.))","volume":"7 ","pages":"25152564241255782"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131387/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spartin is a Lipid Transfer Protein That Facilitates Lipid Droplet Turnover.\",\"authors\":\"Yaoyang Zhong, Tim P Levine\",\"doi\":\"10.1177/25152564241255782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One means by which cells reutilize neutral lipids stored in lipid droplets is to degrade them by autophagy. This process involves spartin, mutations of which cause the rare inherited disorder Troyer syndrome (or spastic paraplegia-20, SPG20). A recently published paper from the team led by Karin Reinsich (Yale) suggests that the molecular function of spartin and its unique highly conserved \\\"senescence\\\" domain is as a lipid transfer protein. Spartin binds to and transfers all lipid species found in lipid droplets, from phospholipids to triglycerides and sterol esters. This lipid transfer activity correlates with spartin's ability to sustain lipid droplet turnover. The senescence domain poses an intriguing question around the wide range of its cargoes, but intriguingly it has yet to yield up its secrets because attempts at crystallization failed and AlphaFold's prediction is unconvincing.</p>\",\"PeriodicalId\":101304,\"journal\":{\"name\":\"Contact (Thousand Oaks (Ventura County, Calif.))\",\"volume\":\"7 \",\"pages\":\"25152564241255782\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131387/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contact (Thousand Oaks (Ventura County, Calif.))\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25152564241255782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contact (Thousand Oaks (Ventura County, Calif.))","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25152564241255782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Spartin is a Lipid Transfer Protein That Facilitates Lipid Droplet Turnover.
One means by which cells reutilize neutral lipids stored in lipid droplets is to degrade them by autophagy. This process involves spartin, mutations of which cause the rare inherited disorder Troyer syndrome (or spastic paraplegia-20, SPG20). A recently published paper from the team led by Karin Reinsich (Yale) suggests that the molecular function of spartin and its unique highly conserved "senescence" domain is as a lipid transfer protein. Spartin binds to and transfers all lipid species found in lipid droplets, from phospholipids to triglycerides and sterol esters. This lipid transfer activity correlates with spartin's ability to sustain lipid droplet turnover. The senescence domain poses an intriguing question around the wide range of its cargoes, but intriguingly it has yet to yield up its secrets because attempts at crystallization failed and AlphaFold's prediction is unconvincing.