{"title":"以腹部表面位移为替代物的肝脏呼吸诱导运动估算:机器人模型和不同对应模型的临床验证。","authors":"Ana Cordón Avila, Momen Abayazid","doi":"10.1007/s11548-024-03176-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This work presents the implementation of an RGB-D camera as a surrogate signal for liver respiratory-induced motion estimation. This study aims to validate the feasibility of RGB-D cameras as a surrogate in a human subject experiment and to compare the performance of different correspondence models.</p><p><strong>Methods: </strong>The proposed approach uses an RGB-D camera to compute an abdominal surface reconstruction and estimate the liver respiratory-induced motion. Two sets of validation experiments were conducted, first, using a robotic liver phantom and, secondly, performing a clinical study with human subjects. In the clinical study, three correspondence models were created changing the conditions of the learning-based model.</p><p><strong>Results: </strong>The motion model for the robotic liver phantom displayed an error below 3 mm with a coefficient of determination above 90% for the different directions of motion. The clinical study presented errors of 4.5, 2.5, and 2.9 mm for the three different motion models with a coefficient of determination above 80% for all three cases.</p><p><strong>Conclusion: </strong>RGB-D cameras are a promising method to accurately estimate the liver respiratory-induced motion. The internal motion can be estimated in a non-contact, noninvasive and flexible approach. Additionally, three training conditions for the correspondence model are studied to potentially mitigate intra- and inter-fraction motion.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329552/pdf/","citationCount":"0","resultStr":"{\"title\":\"Liver respiratory-induced motion estimation using abdominal surface displacement as a surrogate: robotic phantom and clinical validation with varied correspondence models.\",\"authors\":\"Ana Cordón Avila, Momen Abayazid\",\"doi\":\"10.1007/s11548-024-03176-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This work presents the implementation of an RGB-D camera as a surrogate signal for liver respiratory-induced motion estimation. This study aims to validate the feasibility of RGB-D cameras as a surrogate in a human subject experiment and to compare the performance of different correspondence models.</p><p><strong>Methods: </strong>The proposed approach uses an RGB-D camera to compute an abdominal surface reconstruction and estimate the liver respiratory-induced motion. Two sets of validation experiments were conducted, first, using a robotic liver phantom and, secondly, performing a clinical study with human subjects. In the clinical study, three correspondence models were created changing the conditions of the learning-based model.</p><p><strong>Results: </strong>The motion model for the robotic liver phantom displayed an error below 3 mm with a coefficient of determination above 90% for the different directions of motion. The clinical study presented errors of 4.5, 2.5, and 2.9 mm for the three different motion models with a coefficient of determination above 80% for all three cases.</p><p><strong>Conclusion: </strong>RGB-D cameras are a promising method to accurately estimate the liver respiratory-induced motion. The internal motion can be estimated in a non-contact, noninvasive and flexible approach. Additionally, three training conditions for the correspondence model are studied to potentially mitigate intra- and inter-fraction motion.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329552/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03176-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03176-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Liver respiratory-induced motion estimation using abdominal surface displacement as a surrogate: robotic phantom and clinical validation with varied correspondence models.
Purpose: This work presents the implementation of an RGB-D camera as a surrogate signal for liver respiratory-induced motion estimation. This study aims to validate the feasibility of RGB-D cameras as a surrogate in a human subject experiment and to compare the performance of different correspondence models.
Methods: The proposed approach uses an RGB-D camera to compute an abdominal surface reconstruction and estimate the liver respiratory-induced motion. Two sets of validation experiments were conducted, first, using a robotic liver phantom and, secondly, performing a clinical study with human subjects. In the clinical study, three correspondence models were created changing the conditions of the learning-based model.
Results: The motion model for the robotic liver phantom displayed an error below 3 mm with a coefficient of determination above 90% for the different directions of motion. The clinical study presented errors of 4.5, 2.5, and 2.9 mm for the three different motion models with a coefficient of determination above 80% for all three cases.
Conclusion: RGB-D cameras are a promising method to accurately estimate the liver respiratory-induced motion. The internal motion can be estimated in a non-contact, noninvasive and flexible approach. Additionally, three training conditions for the correspondence model are studied to potentially mitigate intra- and inter-fraction motion.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.