{"title":"无神经精神症状的系统性红斑狼疮患者白质的微结构变化:多壳弥散成像研究。","authors":"Wenjun Hu, Ziru Qiu, Qin Huang, Yuhao Lin, Jiaying Mo, Linhui Wang, Jingyi Wang, Kan Deng, Yanqiu Feng, Xinyuan Zhang, Xiangliang Tan","doi":"10.1186/s13075-024-03344-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) provide more comprehensive and informative perspective on microstructural alterations of cerebral white matter (WM) than single-shell diffusion tensor imaging (DTI), especially in the detection of crossing fiber. However, studies on systemic lupus erythematosus patients without neuropsychiatric symptoms (non-NPSLE patients) using multi-shell diffusion imaging remain scarce.</p><p><strong>Methods: </strong>Totally 49 non-NPSLE patients and 41 age-, sex-, and education-matched healthy controls underwent multi-shell diffusion magnetic resonance imaging. Totally 10 diffusion metrics based on DKI (fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, mean kurtosis, axial kurtosis and radial kurtosis) and NODDI (neurite density index, orientation dispersion index and volume fraction of the isotropic diffusion compartment) were evaluated. Tract-based spatial statistics (TBSS) and atlas-based region-of-interest (ROI) analyses were performed to determine group differences in brain WM microstructure. The associations of multi-shell diffusion metrics with clinical indicators were determined for further investigation.</p><p><strong>Results: </strong>TBSS analysis revealed reduced FA, AD and RK and increased ODI in the WM of non-NPSLE patients (P < 0.05, family-wise error corrected), and ODI showed the best discriminative ability. Atlas-based ROI analysis found increased ODI values in anterior thalamic radiation (ATR), inferior frontal-occipital fasciculus (IFOF), forceps major (F_major), forceps minor (F_minor) and uncinate fasciculus (UF) in non-NPSLE patients, and the right ATR showed the best discriminative ability. ODI in the F_major was positively correlated to C3.</p><p><strong>Conclusion: </strong>This study suggested that DKI and NODDI metrics can complementarily detect WM abnormalities in non-NPSLE patients and revealed ODI as a more sensitive and specific biomarker than DKI, guiding further understanding of the pathophysiological mechanism of normal-appearing WM injury in SLE.</p>","PeriodicalId":8419,"journal":{"name":"Arthritis Research & Therapy","volume":"26 1","pages":"110"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134659/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microstructural changes of the white matter in systemic lupus erythematosus patients without neuropsychiatric symptoms: a multi-shell diffusion imaging study.\",\"authors\":\"Wenjun Hu, Ziru Qiu, Qin Huang, Yuhao Lin, Jiaying Mo, Linhui Wang, Jingyi Wang, Kan Deng, Yanqiu Feng, Xinyuan Zhang, Xiangliang Tan\",\"doi\":\"10.1186/s13075-024-03344-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) provide more comprehensive and informative perspective on microstructural alterations of cerebral white matter (WM) than single-shell diffusion tensor imaging (DTI), especially in the detection of crossing fiber. However, studies on systemic lupus erythematosus patients without neuropsychiatric symptoms (non-NPSLE patients) using multi-shell diffusion imaging remain scarce.</p><p><strong>Methods: </strong>Totally 49 non-NPSLE patients and 41 age-, sex-, and education-matched healthy controls underwent multi-shell diffusion magnetic resonance imaging. Totally 10 diffusion metrics based on DKI (fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, mean kurtosis, axial kurtosis and radial kurtosis) and NODDI (neurite density index, orientation dispersion index and volume fraction of the isotropic diffusion compartment) were evaluated. Tract-based spatial statistics (TBSS) and atlas-based region-of-interest (ROI) analyses were performed to determine group differences in brain WM microstructure. The associations of multi-shell diffusion metrics with clinical indicators were determined for further investigation.</p><p><strong>Results: </strong>TBSS analysis revealed reduced FA, AD and RK and increased ODI in the WM of non-NPSLE patients (P < 0.05, family-wise error corrected), and ODI showed the best discriminative ability. Atlas-based ROI analysis found increased ODI values in anterior thalamic radiation (ATR), inferior frontal-occipital fasciculus (IFOF), forceps major (F_major), forceps minor (F_minor) and uncinate fasciculus (UF) in non-NPSLE patients, and the right ATR showed the best discriminative ability. ODI in the F_major was positively correlated to C3.</p><p><strong>Conclusion: </strong>This study suggested that DKI and NODDI metrics can complementarily detect WM abnormalities in non-NPSLE patients and revealed ODI as a more sensitive and specific biomarker than DKI, guiding further understanding of the pathophysiological mechanism of normal-appearing WM injury in SLE.</p>\",\"PeriodicalId\":8419,\"journal\":{\"name\":\"Arthritis Research & Therapy\",\"volume\":\"26 1\",\"pages\":\"110\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthritis Research & Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13075-024-03344-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthritis Research & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13075-024-03344-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Microstructural changes of the white matter in systemic lupus erythematosus patients without neuropsychiatric symptoms: a multi-shell diffusion imaging study.
Background: Diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) provide more comprehensive and informative perspective on microstructural alterations of cerebral white matter (WM) than single-shell diffusion tensor imaging (DTI), especially in the detection of crossing fiber. However, studies on systemic lupus erythematosus patients without neuropsychiatric symptoms (non-NPSLE patients) using multi-shell diffusion imaging remain scarce.
Methods: Totally 49 non-NPSLE patients and 41 age-, sex-, and education-matched healthy controls underwent multi-shell diffusion magnetic resonance imaging. Totally 10 diffusion metrics based on DKI (fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, mean kurtosis, axial kurtosis and radial kurtosis) and NODDI (neurite density index, orientation dispersion index and volume fraction of the isotropic diffusion compartment) were evaluated. Tract-based spatial statistics (TBSS) and atlas-based region-of-interest (ROI) analyses were performed to determine group differences in brain WM microstructure. The associations of multi-shell diffusion metrics with clinical indicators were determined for further investigation.
Results: TBSS analysis revealed reduced FA, AD and RK and increased ODI in the WM of non-NPSLE patients (P < 0.05, family-wise error corrected), and ODI showed the best discriminative ability. Atlas-based ROI analysis found increased ODI values in anterior thalamic radiation (ATR), inferior frontal-occipital fasciculus (IFOF), forceps major (F_major), forceps minor (F_minor) and uncinate fasciculus (UF) in non-NPSLE patients, and the right ATR showed the best discriminative ability. ODI in the F_major was positively correlated to C3.
Conclusion: This study suggested that DKI and NODDI metrics can complementarily detect WM abnormalities in non-NPSLE patients and revealed ODI as a more sensitive and specific biomarker than DKI, guiding further understanding of the pathophysiological mechanism of normal-appearing WM injury in SLE.
期刊介绍:
Established in 1999, Arthritis Research and Therapy is an international, open access, peer-reviewed journal, publishing original articles in the area of musculoskeletal research and therapy as well as, reviews, commentaries and reports. A major focus of the journal is on the immunologic processes leading to inflammation, damage and repair as they relate to autoimmune rheumatic and musculoskeletal conditions, and which inform the translation of this knowledge into advances in clinical care. Original basic, translational and clinical research is considered for publication along with results of early and late phase therapeutic trials, especially as they pertain to the underpinning science that informs clinical observations in interventional studies.