Zhidong Yang, Hongjia Li, Dawei Zang, Renmin Han, Fa Zhang
{"title":"利用仿真预训练改进冷冻电镜显微照片的去噪效果","authors":"Zhidong Yang, Hongjia Li, Dawei Zang, Renmin Han, Fa Zhang","doi":"10.1089/cmb.2024.0513","DOIUrl":null,"url":null,"abstract":"<p><p><b>Cryo-electron microscopy (cryo-EM) has emerged as a potent technique for determining the structure and functionality of biological macromolecules. However, limited by the physical imaging conditions, such as low electron beam dose, micrographs in cryo-EM typically contend with an extremely low signal-to-noise ratio (SNR), impeding the efficiency and efficacy of subsequent analyses. Therefore, there is a growing demand for an efficient denoising algorithm designed for cryo-EM micrographs, aiming to enhance the quality of macromolecular analysis. However, owing to the absence of a comprehensive and well-defined dataset with ground truth images, supervised image denoising methods exhibit limited generalization when applied to experimental micrographs. To tackle this challenge, we introduce a simulation-aware image denoising (SaID) pretrained model designed to enhance the SNR of cryo-EM micrographs where the training is solely based on an accurately simulated dataset. First, we propose a parameter calibration algorithm for simulated dataset generation, aiming to align simulation parameters with those of experimental micrographs. Second, leveraging the accurately simulated dataset, we propose to train a deep general denoising model that can well generalize to real experimental cryo-EM micrographs. Comprehensive experimental results demonstrate that our pretrained denoising model achieves excellent denoising performance on experimental cryo-EM micrographs, significantly streamlining downstream analysis</b>.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"564-575"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Denoising of Cryo-Electron Microscopy Micrographs with Simulation-Aware Pretraining.\",\"authors\":\"Zhidong Yang, Hongjia Li, Dawei Zang, Renmin Han, Fa Zhang\",\"doi\":\"10.1089/cmb.2024.0513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Cryo-electron microscopy (cryo-EM) has emerged as a potent technique for determining the structure and functionality of biological macromolecules. However, limited by the physical imaging conditions, such as low electron beam dose, micrographs in cryo-EM typically contend with an extremely low signal-to-noise ratio (SNR), impeding the efficiency and efficacy of subsequent analyses. Therefore, there is a growing demand for an efficient denoising algorithm designed for cryo-EM micrographs, aiming to enhance the quality of macromolecular analysis. However, owing to the absence of a comprehensive and well-defined dataset with ground truth images, supervised image denoising methods exhibit limited generalization when applied to experimental micrographs. To tackle this challenge, we introduce a simulation-aware image denoising (SaID) pretrained model designed to enhance the SNR of cryo-EM micrographs where the training is solely based on an accurately simulated dataset. First, we propose a parameter calibration algorithm for simulated dataset generation, aiming to align simulation parameters with those of experimental micrographs. Second, leveraging the accurately simulated dataset, we propose to train a deep general denoising model that can well generalize to real experimental cryo-EM micrographs. Comprehensive experimental results demonstrate that our pretrained denoising model achieves excellent denoising performance on experimental cryo-EM micrographs, significantly streamlining downstream analysis</b>.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"564-575\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0513\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0513","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Improved Denoising of Cryo-Electron Microscopy Micrographs with Simulation-Aware Pretraining.
Cryo-electron microscopy (cryo-EM) has emerged as a potent technique for determining the structure and functionality of biological macromolecules. However, limited by the physical imaging conditions, such as low electron beam dose, micrographs in cryo-EM typically contend with an extremely low signal-to-noise ratio (SNR), impeding the efficiency and efficacy of subsequent analyses. Therefore, there is a growing demand for an efficient denoising algorithm designed for cryo-EM micrographs, aiming to enhance the quality of macromolecular analysis. However, owing to the absence of a comprehensive and well-defined dataset with ground truth images, supervised image denoising methods exhibit limited generalization when applied to experimental micrographs. To tackle this challenge, we introduce a simulation-aware image denoising (SaID) pretrained model designed to enhance the SNR of cryo-EM micrographs where the training is solely based on an accurately simulated dataset. First, we propose a parameter calibration algorithm for simulated dataset generation, aiming to align simulation parameters with those of experimental micrographs. Second, leveraging the accurately simulated dataset, we propose to train a deep general denoising model that can well generalize to real experimental cryo-EM micrographs. Comprehensive experimental results demonstrate that our pretrained denoising model achieves excellent denoising performance on experimental cryo-EM micrographs, significantly streamlining downstream analysis.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases