二氧化碳、甲烷和合成牛呼吸挥发物会吸引寻找宿主的稳定蝇 Stomoxys calcitrans。

IF 2.2 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Emma M Kovacs, Charlotte Pinard, Regine Gries, Arshpreet Manku, Gerhard Gries
{"title":"二氧化碳、甲烷和合成牛呼吸挥发物会吸引寻找宿主的稳定蝇 Stomoxys calcitrans。","authors":"Emma M Kovacs, Charlotte Pinard, Regine Gries, Arshpreet Manku, Gerhard Gries","doi":"10.1007/s10886-024-01502-0","DOIUrl":null,"url":null,"abstract":"<p><p>Stable flies, Stomoxys calcitrans (L.), are blood-feeding ectoparasites of cattle. Host-seeking stable flies respond to various cattle host cues, but a potential role of cattle breath gases [carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>)] and cattle breath volatiles (acetone, isoprene, 2-butanone, 2-propanol, propionic acid, 3-methyl butyric acid, phenol), alone or in combination, on host-seeking behavior of stable flies has not yet been comprehensively investigated. In laboratory and greenhouse experiments, we tested the hypotheses that (1) CO<sub>2</sub> and CH<sub>4</sub> interactively attract stable flies, (2) CO<sub>2</sub> 'gates' attraction of stable flies to CH<sub>4</sub>, and (3) breath volatiles on their own, or in combination with both CO<sub>2</sub> and CH<sub>4</sub>, attract stable flies. In Y-tube olfactometer experiments, the blend of CH<sub>4</sub> (0.5%) and CO<sub>2</sub> (1%) in breathing air ('b-air') attracted significantly more female flies than CH<sub>4</sub>, or CO<sub>2</sub>, in b-air. The flies' responses to CH<sub>4</sub> were contingent upon their prior or concurrent exposure to CO<sub>2</sub>. In two-choice experiments in a large greenhouse compartment, significantly more flies landed on the host-look-alike barrel that disseminated a blend of CO<sub>2</sub> and CH<sub>4</sub> in b-air (CO<sub>2</sub>/CH<sub>4</sub>/b-air) than on the barrel disseminating either b-air or CO<sub>2</sub>. Moreover, significantly more flies landed on the barrel that disseminated synthetic breath volatiles (SBVs) than on the barrel disseminating b-air. The blend of CO<sub>2</sub>/CH<sub>4</sub>/b-air and SBVs elicited more fly landings on barrels than CO<sub>2</sub>/CH<sub>4</sub>/b-air but not than SBVs. SBVs, possibly combined with both CH<sub>4</sub> and CO<sub>2</sub>, could be developed as a lure to enhance trap captures of stable flies in livestock production facilities.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Dioxide, Methane, and Synthetic Cattle Breath Volatiles Attract Host-Seeking Stable Flies, Stomoxys calcitrans.\",\"authors\":\"Emma M Kovacs, Charlotte Pinard, Regine Gries, Arshpreet Manku, Gerhard Gries\",\"doi\":\"10.1007/s10886-024-01502-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stable flies, Stomoxys calcitrans (L.), are blood-feeding ectoparasites of cattle. Host-seeking stable flies respond to various cattle host cues, but a potential role of cattle breath gases [carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>)] and cattle breath volatiles (acetone, isoprene, 2-butanone, 2-propanol, propionic acid, 3-methyl butyric acid, phenol), alone or in combination, on host-seeking behavior of stable flies has not yet been comprehensively investigated. In laboratory and greenhouse experiments, we tested the hypotheses that (1) CO<sub>2</sub> and CH<sub>4</sub> interactively attract stable flies, (2) CO<sub>2</sub> 'gates' attraction of stable flies to CH<sub>4</sub>, and (3) breath volatiles on their own, or in combination with both CO<sub>2</sub> and CH<sub>4</sub>, attract stable flies. In Y-tube olfactometer experiments, the blend of CH<sub>4</sub> (0.5%) and CO<sub>2</sub> (1%) in breathing air ('b-air') attracted significantly more female flies than CH<sub>4</sub>, or CO<sub>2</sub>, in b-air. The flies' responses to CH<sub>4</sub> were contingent upon their prior or concurrent exposure to CO<sub>2</sub>. In two-choice experiments in a large greenhouse compartment, significantly more flies landed on the host-look-alike barrel that disseminated a blend of CO<sub>2</sub> and CH<sub>4</sub> in b-air (CO<sub>2</sub>/CH<sub>4</sub>/b-air) than on the barrel disseminating either b-air or CO<sub>2</sub>. Moreover, significantly more flies landed on the barrel that disseminated synthetic breath volatiles (SBVs) than on the barrel disseminating b-air. The blend of CO<sub>2</sub>/CH<sub>4</sub>/b-air and SBVs elicited more fly landings on barrels than CO<sub>2</sub>/CH<sub>4</sub>/b-air but not than SBVs. SBVs, possibly combined with both CH<sub>4</sub> and CO<sub>2</sub>, could be developed as a lure to enhance trap captures of stable flies in livestock production facilities.</p>\",\"PeriodicalId\":15346,\"journal\":{\"name\":\"Journal of Chemical Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10886-024-01502-0\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-024-01502-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

稳定蝇(Stomoxys calcitrans (L.))是牛的食血外寄生虫。寻找宿主的厩蝇会对各种牛宿主线索做出反应,但牛呼吸气体[二氧化碳(CO2)、甲烷(CH4)]和牛呼吸挥发物(丙酮、异戊二烯、2-丁酮、2-丙醇、丙酸、3-甲基丁酸、苯酚)单独或共同对厩蝇寻找宿主行为的潜在作用尚未得到全面研究。在实验室和温室实验中,我们检验了以下假设:(1) CO2 和 CH4 相互吸引稳定蝇;(2) CO2 "门 "吸引稳定蝇到 CH4;(3) 呼吸挥发物本身或与 CO2 和 CH4 结合吸引稳定蝇。在 Y 型管嗅觉仪实验中,呼吸空气("b-air")中混合 CH4(0.5%)和 CO2(1%)吸引的雌蝇明显多于 b-air中的 CH4 或 CO2。苍蝇对 CH4 的反应取决于它们之前或同时接触 CO2 的情况。在一个大型温室中进行的二选一实验中,落在散发二氧化碳和甲烷混合气体(CO2/CH4/b-air)的类似宿主桶上的苍蝇明显多于落在散发b-air或二氧化碳的桶上的苍蝇。此外,落在散发合成呼吸挥发物(SBVs)的木桶上的苍蝇明显多于散发 b-空气的木桶。CO2/CH4/b-air 与 SBVs 的混合比 CO2/CH4/b-air 更能吸引苍蝇落在桶上,但不比 SBVs 更能吸引苍蝇落在桶上。SBV(可能与 CH4 和 CO2 混合使用)可作为一种诱饵,用于提高家畜生产设施中捕获厩蝇的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Carbon Dioxide, Methane, and Synthetic Cattle Breath Volatiles Attract Host-Seeking Stable Flies, Stomoxys calcitrans.

Carbon Dioxide, Methane, and Synthetic Cattle Breath Volatiles Attract Host-Seeking Stable Flies, Stomoxys calcitrans.

Stable flies, Stomoxys calcitrans (L.), are blood-feeding ectoparasites of cattle. Host-seeking stable flies respond to various cattle host cues, but a potential role of cattle breath gases [carbon dioxide (CO2), methane (CH4)] and cattle breath volatiles (acetone, isoprene, 2-butanone, 2-propanol, propionic acid, 3-methyl butyric acid, phenol), alone or in combination, on host-seeking behavior of stable flies has not yet been comprehensively investigated. In laboratory and greenhouse experiments, we tested the hypotheses that (1) CO2 and CH4 interactively attract stable flies, (2) CO2 'gates' attraction of stable flies to CH4, and (3) breath volatiles on their own, or in combination with both CO2 and CH4, attract stable flies. In Y-tube olfactometer experiments, the blend of CH4 (0.5%) and CO2 (1%) in breathing air ('b-air') attracted significantly more female flies than CH4, or CO2, in b-air. The flies' responses to CH4 were contingent upon their prior or concurrent exposure to CO2. In two-choice experiments in a large greenhouse compartment, significantly more flies landed on the host-look-alike barrel that disseminated a blend of CO2 and CH4 in b-air (CO2/CH4/b-air) than on the barrel disseminating either b-air or CO2. Moreover, significantly more flies landed on the barrel that disseminated synthetic breath volatiles (SBVs) than on the barrel disseminating b-air. The blend of CO2/CH4/b-air and SBVs elicited more fly landings on barrels than CO2/CH4/b-air but not than SBVs. SBVs, possibly combined with both CH4 and CO2, could be developed as a lure to enhance trap captures of stable flies in livestock production facilities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Ecology
Journal of Chemical Ecology 环境科学-生化与分子生物学
CiteScore
5.10
自引率
4.30%
发文量
58
审稿时长
4 months
期刊介绍: Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature. Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信