{"title":"化学信息回归方法及其适用领域。","authors":"Thomas-Martin Dutschmann, Valerie Schlenker, Knut Baumann","doi":"10.1002/minf.202400018","DOIUrl":null,"url":null,"abstract":"<p><p>The growing interest in chemoinformatic model uncertainty calls for a summary of the most widely used regression techniques and how to estimate their reliability. Regression models learn a mapping from the space of explanatory variables to the space of continuous output values. Among other limitations, the predictive performance of the model is restricted by the training data used for model fitting. Identification of unusual objects by outlier detection methods can improve model performance. Additionally, proper model evaluation necessitates defining the limitations of the model, often called the applicability domain. Comparable to certain classifiers, some regression techniques come with built-in methods or augmentations to quantify their (un)certainty, while others rely on generic procedures. The theoretical background of their working principles and how to deduce specific and general definitions for their domain of applicability shall be explained.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400018"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemoinformatic regression methods and their applicability domain.\",\"authors\":\"Thomas-Martin Dutschmann, Valerie Schlenker, Knut Baumann\",\"doi\":\"10.1002/minf.202400018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing interest in chemoinformatic model uncertainty calls for a summary of the most widely used regression techniques and how to estimate their reliability. Regression models learn a mapping from the space of explanatory variables to the space of continuous output values. Among other limitations, the predictive performance of the model is restricted by the training data used for model fitting. Identification of unusual objects by outlier detection methods can improve model performance. Additionally, proper model evaluation necessitates defining the limitations of the model, often called the applicability domain. Comparable to certain classifiers, some regression techniques come with built-in methods or augmentations to quantify their (un)certainty, while others rely on generic procedures. The theoretical background of their working principles and how to deduce specific and general definitions for their domain of applicability shall be explained.</p>\",\"PeriodicalId\":18853,\"journal\":{\"name\":\"Molecular Informatics\",\"volume\":\" \",\"pages\":\"e202400018\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/minf.202400018\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Chemoinformatic regression methods and their applicability domain.
The growing interest in chemoinformatic model uncertainty calls for a summary of the most widely used regression techniques and how to estimate their reliability. Regression models learn a mapping from the space of explanatory variables to the space of continuous output values. Among other limitations, the predictive performance of the model is restricted by the training data used for model fitting. Identification of unusual objects by outlier detection methods can improve model performance. Additionally, proper model evaluation necessitates defining the limitations of the model, often called the applicability domain. Comparable to certain classifiers, some regression techniques come with built-in methods or augmentations to quantify their (un)certainty, while others rely on generic procedures. The theoretical background of their working principles and how to deduce specific and general definitions for their domain of applicability shall be explained.
期刊介绍:
Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010.
Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation.
The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.