{"title":"环矩阵变换的修正收缩目标问题","authors":"NA YUAN, SHUAILING WANG","doi":"10.1142/s0218348x24500762","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we calculate the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\"eq-00001.gif\" display=\"block\" overflow=\"scroll\"><mrow><mfenced close=\"}\" open=\"{\" separators=\"\"><mrow><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><munder><mrow><mo>∏</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></mrow></munder><mo>|</mo><msubsup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo><</mo><mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></mfenced><mspace width=\"-.17em\"></mspace><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span><span></span> is the standard <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span>-transformation with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>ψ</mi></math></span><span></span> is a positive function on <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mo stretchy=\"false\">⋅</mo><mo>|</mo></math></span><span></span> is the usual metric on the torus <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕋</mi></math></span><span></span>. Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>T</mi></math></span><span></span> be a <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><mo stretchy=\"false\">×</mo><mi>d</mi></math></span><span></span> non-singular matrix with real coefficients. Then, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>T</mi></math></span><span></span> determines a self-map of the <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi></math></span><span></span>-dimensional torus <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace width=\"-.2em\"></mspace><mo stretchy=\"false\">/</mo><msup><mrow><mi>ℤ</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span>. For any <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></math></span><span></span>, let <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ψ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span> be a positive function on <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span>. We obtain the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\"eq-00019.gif\" display=\"block\" overflow=\"scroll\"><mrow><mo stretchy=\"false\">{</mo><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>∈</mo><mi>L</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo><mo>,</mo><mi mathvariant=\"normal\">Ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi><mo stretchy=\"false\">}</mo><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo>,</mo><mi mathvariant=\"normal\">Ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> is a hyperrectangle and <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span><span></span> is a sequence of Lipschitz vector-valued functions on <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span> with a uniform Lipschitz constant.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODIFIED SHRINKING TARGET PROBLEM FOR MATRIX TRANSFORMATIONS OF TORI\",\"authors\":\"NA YUAN, SHUAILING WANG\",\"doi\":\"10.1142/s0218348x24500762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we calculate the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\\\"eq-00001.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><mfenced close=\\\"}\\\" open=\\\"{\\\" separators=\\\"\\\"><mrow><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><munder><mrow><mo>∏</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></mrow></munder><mo>|</mo><msubsup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">−</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo><</mo><mi>ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></mfenced><mspace width=\\\"-.17em\\\"></mspace><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span><span></span> is the standard <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span>-transformation with <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn></math></span><span></span>, <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ψ</mi></math></span><span></span> is a positive function on <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mo stretchy=\\\"false\\\">⋅</mo><mo>|</mo></math></span><span></span> is the usual metric on the torus <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝕋</mi></math></span><span></span>. Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>T</mi></math></span><span></span> be a <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>d</mi><mo stretchy=\\\"false\\\">×</mo><mi>d</mi></math></span><span></span> non-singular matrix with real coefficients. Then, <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>T</mi></math></span><span></span> determines a self-map of the <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>d</mi></math></span><span></span>-dimensional torus <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace width=\\\"-.2em\\\"></mspace><mo stretchy=\\\"false\\\">/</mo><msup><mrow><mi>ℤ</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span>. For any <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></math></span><span></span>, let <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ψ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span> be a positive function on <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo>:</mo><mo>=</mo><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> with <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span>. We obtain the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\\\"eq-00019.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><mo stretchy=\\\"false\\\">{</mo><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>∈</mo><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi mathvariant=\\\"normal\\\">Ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi><mo stretchy=\\\"false\\\">}</mo><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo>,</mo><mi mathvariant=\\\"normal\\\">Ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is a hyperrectangle and <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span><span></span> is a sequence of Lipschitz vector-valued functions on <span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span> with a uniform Lipschitz constant.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文计算了分形集 x∈𝕋d 的 Hausdorff 维度:∏1≤i≤d|Tβin(xi)-xi|<ψ(n),其中Tβi是标准的βi-变换,βi>1,ψ是ℕ上的正函数,|⋅|是环面𝕋上的通常度量。此外,我们还研究了缩小目标问题的一个修正版本,它将缩小目标问题与环矩阵变换的定量递推性质统一起来。假设 T 是一个具有实系数的 d×d 非奇异矩阵。那么,T 决定了 d 维环面的自映射𝕋d:=ℝd/ℤd。对于任意 1≤i≤d,设ψi 是ℕ上的正函数,且Ψ(n):=(ψ1(n),...,ψd(n)),n∈ℕ。我们可以得到分形集 {x∈𝕋d 的豪斯多夫维:Tn(x)∈L(fn(x),Ψ(n)) for infinitely many n∈ℕ},其中 L(fn(x,Ψ(n)) 是一个超矩形,{}n≥1 是在𝕋d 上具有均匀 Lipschitz 常量的 Lipschitz 向量值函数序列。
MODIFIED SHRINKING TARGET PROBLEM FOR MATRIX TRANSFORMATIONS OF TORI
In this paper, we calculate the Hausdorff dimension of the fractal set where is the standard -transformation with , is a positive function on and is the usual metric on the torus . Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let be a non-singular matrix with real coefficients. Then, determines a self-map of the -dimensional torus . For any , let be a positive function on and with . We obtain the Hausdorff dimension of the fractal set where is a hyperrectangle and is a sequence of Lipschitz vector-valued functions on with a uniform Lipschitz constant.