环矩阵变换的修正收缩目标问题

Fractals Pub Date : 2024-05-21 DOI:10.1142/s0218348x24500762
NA YUAN, SHUAILING WANG
{"title":"环矩阵变换的修正收缩目标问题","authors":"NA YUAN, SHUAILING WANG","doi":"10.1142/s0218348x24500762","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we calculate the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\"eq-00001.gif\" display=\"block\" overflow=\"scroll\"><mrow><mfenced close=\"}\" open=\"{\" separators=\"\"><mrow><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><munder><mrow><mo>∏</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></mrow></munder><mo>|</mo><msubsup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>&lt;</mo><mi>ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></mfenced><mspace width=\"-.17em\"></mspace><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span><span></span> is the standard <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span>-transformation with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>ψ</mi></math></span><span></span> is a positive function on <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mo stretchy=\"false\">⋅</mo><mo>|</mo></math></span><span></span> is the usual metric on the torus <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕋</mi></math></span><span></span>. Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>T</mi></math></span><span></span> be a <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><mo stretchy=\"false\">×</mo><mi>d</mi></math></span><span></span> non-singular matrix with real coefficients. Then, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>T</mi></math></span><span></span> determines a self-map of the <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi></math></span><span></span>-dimensional torus <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace width=\"-.2em\"></mspace><mo stretchy=\"false\">/</mo><msup><mrow><mi>ℤ</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span>. For any <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></math></span><span></span>, let <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ψ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span> be a positive function on <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span>. We obtain the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\"eq-00019.gif\" display=\"block\" overflow=\"scroll\"><mrow><mo stretchy=\"false\">{</mo><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>∈</mo><mi>L</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo stretchy=\"false\">)</mo><mo>,</mo><mi mathvariant=\"normal\">Ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi><mo stretchy=\"false\">}</mo><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mstyle mathvariant=\"monospace\"><mi>x</mi></mstyle><mo>,</mo><mi mathvariant=\"normal\">Ψ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> is a hyperrectangle and <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span><span></span> is a sequence of Lipschitz vector-valued functions on <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span> with a uniform Lipschitz constant.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MODIFIED SHRINKING TARGET PROBLEM FOR MATRIX TRANSFORMATIONS OF TORI\",\"authors\":\"NA YUAN, SHUAILING WANG\",\"doi\":\"10.1142/s0218348x24500762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we calculate the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\\\"eq-00001.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><mfenced close=\\\"}\\\" open=\\\"{\\\" separators=\\\"\\\"><mrow><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><munder><mrow><mo>∏</mo></mrow><mrow><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></mrow></munder><mo>|</mo><msubsup><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">−</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>&lt;</mo><mi>ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></mfenced><mspace width=\\\"-.17em\\\"></mspace><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msub></math></span><span></span> is the standard <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span>-transformation with <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>β</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span><span></span>, <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ψ</mi></math></span><span></span> is a positive function on <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mo stretchy=\\\"false\\\">⋅</mo><mo>|</mo></math></span><span></span> is the usual metric on the torus <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝕋</mi></math></span><span></span>. Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>T</mi></math></span><span></span> be a <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>d</mi><mo stretchy=\\\"false\\\">×</mo><mi>d</mi></math></span><span></span> non-singular matrix with real coefficients. Then, <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>T</mi></math></span><span></span> determines a self-map of the <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>d</mi></math></span><span></span>-dimensional torus <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>d</mi></mrow></msup><mspace width=\\\"-.2em\\\"></mspace><mo stretchy=\\\"false\\\">/</mo><msup><mrow><mi>ℤ</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span>. For any <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>d</mi></math></span><span></span>, let <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ψ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span> be a positive function on <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℕ</mi></math></span><span></span> and <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo>:</mo><mo>=</mo><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> with <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span>. We obtain the Hausdorff dimension of the fractal set <disp-formula-group><span><math altimg=\\\"eq-00019.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><mo stretchy=\\\"false\\\">{</mo><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo>∈</mo><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>∈</mo><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi mathvariant=\\\"normal\\\">Ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mtext> </mtext><mstyle><mtext>for infinitely many </mtext></mstyle><mi>n</mi><mo>∈</mo><mi>ℕ</mi><mo stretchy=\\\"false\\\">}</mo><mo>,</mo></mrow></math></span><span></span></disp-formula-group> where <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mstyle mathvariant=\\\"monospace\\\"><mi>x</mi></mstyle><mo>,</mo><mi mathvariant=\\\"normal\\\">Ψ</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is a hyperrectangle and <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">}</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub></math></span><span></span> is a sequence of Lipschitz vector-valued functions on <span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝕋</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span><span></span> with a uniform Lipschitz constant.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文计算了分形集 x∈𝕋d 的 Hausdorff 维度:∏1≤i≤d|Tβin(xi)-xi|<ψ(n),其中Tβi是标准的βi-变换,βi>1,ψ是ℕ上的正函数,|⋅|是环面𝕋上的通常度量。此外,我们还研究了缩小目标问题的一个修正版本,它将缩小目标问题与环矩阵变换的定量递推性质统一起来。假设 T 是一个具有实系数的 d×d 非奇异矩阵。那么,T 决定了 d 维环面的自映射𝕋d:=ℝd/ℤd。对于任意 1≤i≤d,设ψi 是ℕ上的正函数,且Ψ(n):=(ψ1(n),...,ψd(n)),n∈ℕ。我们可以得到分形集 {x∈𝕋d 的豪斯多夫维:Tn(x)∈L(fn(x),Ψ(n)) for infinitely many n∈ℕ},其中 L(fn(x,Ψ(n)) 是一个超矩形,{}n≥1 是在𝕋d 上具有均匀 Lipschitz 常量的 Lipschitz 向量值函数序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MODIFIED SHRINKING TARGET PROBLEM FOR MATRIX TRANSFORMATIONS OF TORI

In this paper, we calculate the Hausdorff dimension of the fractal set x𝕋d:1id|Tβin(xi)xi|<ψ(n) for infinitely many n, where Tβi is the standard βi-transformation with βi>1, ψ is a positive function on and || is the usual metric on the torus 𝕋. Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let T be a d×d non-singular matrix with real coefficients. Then, T determines a self-map of the d-dimensional torus 𝕋d:=d/d. For any 1id, let ψi be a positive function on and Ψ(n):=(ψ1(n),,ψd(n)) with n. We obtain the Hausdorff dimension of the fractal set {x𝕋d:Tn(x)L(fn(x),Ψ(n)) for infinitely many n}, where L(fn(x,Ψ(n))) is a hyperrectangle and {fn}n1 is a sequence of Lipschitz vector-valued functions on 𝕋d with a uniform Lipschitz constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信