Shu Jia , Tao Yang , Sheng Gao , Luyue Bai , Zhiguo Zhu , Siqi Zhao , Yexin Wang , Xiao Liang , Yanpeng Li , Longfei Gao , Zifang Zhang , Xu Gao , Dongru Li , Shang Chen , Bin Zhang , Chunyang Meng
{"title":"脐带间充质干细胞外泌体通过修复线粒体功能障碍改善椎间盘退行性变","authors":"Shu Jia , Tao Yang , Sheng Gao , Luyue Bai , Zhiguo Zhu , Siqi Zhao , Yexin Wang , Xiao Liang , Yanpeng Li , Longfei Gao , Zifang Zhang , Xu Gao , Dongru Li , Shang Chen , Bin Zhang , Chunyang Meng","doi":"10.1016/j.jot.2023.10.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Reactive oxygen species (ROS), predominantly generated by mitochondria, play a crucial role in the pathogenesis of intervertebral disc degeneration (IVDD). Reduction of ROS levels may be an effective strategy to delay IVDD. In this study, we assessed whether umbilical cord mesenchymal stem cell-exosomes (UCMSC-exos) can be used to treat IVDD by suppressing ROS production caused by mitochondrial dysfunction.</p></div><div><h3>Materials and methods</h3><p>Human UCMSC-exos were isolated and identified. Nucleus pulposus cells (NPCs) were stimulated with H<sub>2</sub>O<sub>2</sub> in the presence or absence of exosomes. Then, 4D label free quantitative (4D-LFQ) proteomics were used to analyze the differentially expressed (DE) proteins. Mitochondrial membrane potential (MMP), mitochondrial ROS and protein levels were determined via immunofluorescence staining, flow cytometry and western blotting respectively. Additionally, high-throughput sequencing was performed to identify the DE miRNAs in NPCs. Finally, therapeutic effects of UCMSC-exos were investigated in a puncture-induced IVDD rat model. Degenerative grades of rat IVDs were assessed using magnetic resonance imaging and histochemical staining.</p></div><div><h3>Results</h3><p>UCMSC-exos effectively improved the viability of NPCs and restored the expression of the extracellular matrix (ECM) proteins, collagen type II alpha-1 (COL2A1) and matrix metalloproteinase-13 induced by H<sub>2</sub>O<sub>2</sub>. Additionally, UCMSC-exos not only reduced the total intracellular ROS and mitochondrial superoxide levels, but also increased MMP in pathological NPCs. 4D-LFQ proteomics and western blotting further revealed that UCMSC-exos up-regulated the levels of the mitochondrial protein, mitochondrial transcription factor A (TFAM), in H<sub>2</sub>O<sub>2</sub>-induced NPCs. High-throughput sequencing and qRT-PCR uncovered that UCMSC-exos down-regulated the levels of miR-194-5p, a potential negative regulator of TFAM, induced by H<sub>2</sub>O<sub>2</sub>. Finally, in vivo results showed that UCMSC-exos injection improved the histopathological structure and enhanced the expression levels of COL2A1 and TFAM in the rat IVDD model.</p></div><div><h3>Conclusions</h3><p>Our findings suggest that UCMSC-exos promote ECM synthesis, relieve mitochondrial oxidative stress, and attenuate mitochondrial dysfunction in vitro and in vivo, thereby effectively treating IVDD.</p></div><div><h3>The translational potential of this article</h3><p>This study provides solid experimental data support for the therapeutic effects of UCMSC-exos on IVDD, suggesting that UCMSC-exos will be a promising nanotherapy for IVDD.</p></div>","PeriodicalId":16636,"journal":{"name":"Journal of Orthopaedic Translation","volume":"46 ","pages":"Pages 103-115"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214031X23000785/pdfft?md5=0a997da267908804c9efffd0d3e9cb85&pid=1-s2.0-S2214031X23000785-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exosomes from umbilical cord mesenchymal stem cells ameliorate intervertebral disc degeneration via repairing mitochondrial dysfunction\",\"authors\":\"Shu Jia , Tao Yang , Sheng Gao , Luyue Bai , Zhiguo Zhu , Siqi Zhao , Yexin Wang , Xiao Liang , Yanpeng Li , Longfei Gao , Zifang Zhang , Xu Gao , Dongru Li , Shang Chen , Bin Zhang , Chunyang Meng\",\"doi\":\"10.1016/j.jot.2023.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Reactive oxygen species (ROS), predominantly generated by mitochondria, play a crucial role in the pathogenesis of intervertebral disc degeneration (IVDD). Reduction of ROS levels may be an effective strategy to delay IVDD. In this study, we assessed whether umbilical cord mesenchymal stem cell-exosomes (UCMSC-exos) can be used to treat IVDD by suppressing ROS production caused by mitochondrial dysfunction.</p></div><div><h3>Materials and methods</h3><p>Human UCMSC-exos were isolated and identified. Nucleus pulposus cells (NPCs) were stimulated with H<sub>2</sub>O<sub>2</sub> in the presence or absence of exosomes. Then, 4D label free quantitative (4D-LFQ) proteomics were used to analyze the differentially expressed (DE) proteins. Mitochondrial membrane potential (MMP), mitochondrial ROS and protein levels were determined via immunofluorescence staining, flow cytometry and western blotting respectively. Additionally, high-throughput sequencing was performed to identify the DE miRNAs in NPCs. Finally, therapeutic effects of UCMSC-exos were investigated in a puncture-induced IVDD rat model. Degenerative grades of rat IVDs were assessed using magnetic resonance imaging and histochemical staining.</p></div><div><h3>Results</h3><p>UCMSC-exos effectively improved the viability of NPCs and restored the expression of the extracellular matrix (ECM) proteins, collagen type II alpha-1 (COL2A1) and matrix metalloproteinase-13 induced by H<sub>2</sub>O<sub>2</sub>. Additionally, UCMSC-exos not only reduced the total intracellular ROS and mitochondrial superoxide levels, but also increased MMP in pathological NPCs. 4D-LFQ proteomics and western blotting further revealed that UCMSC-exos up-regulated the levels of the mitochondrial protein, mitochondrial transcription factor A (TFAM), in H<sub>2</sub>O<sub>2</sub>-induced NPCs. High-throughput sequencing and qRT-PCR uncovered that UCMSC-exos down-regulated the levels of miR-194-5p, a potential negative regulator of TFAM, induced by H<sub>2</sub>O<sub>2</sub>. Finally, in vivo results showed that UCMSC-exos injection improved the histopathological structure and enhanced the expression levels of COL2A1 and TFAM in the rat IVDD model.</p></div><div><h3>Conclusions</h3><p>Our findings suggest that UCMSC-exos promote ECM synthesis, relieve mitochondrial oxidative stress, and attenuate mitochondrial dysfunction in vitro and in vivo, thereby effectively treating IVDD.</p></div><div><h3>The translational potential of this article</h3><p>This study provides solid experimental data support for the therapeutic effects of UCMSC-exos on IVDD, suggesting that UCMSC-exos will be a promising nanotherapy for IVDD.</p></div>\",\"PeriodicalId\":16636,\"journal\":{\"name\":\"Journal of Orthopaedic Translation\",\"volume\":\"46 \",\"pages\":\"Pages 103-115\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214031X23000785/pdfft?md5=0a997da267908804c9efffd0d3e9cb85&pid=1-s2.0-S2214031X23000785-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedic Translation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214031X23000785\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Translation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214031X23000785","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Exosomes from umbilical cord mesenchymal stem cells ameliorate intervertebral disc degeneration via repairing mitochondrial dysfunction
Background
Reactive oxygen species (ROS), predominantly generated by mitochondria, play a crucial role in the pathogenesis of intervertebral disc degeneration (IVDD). Reduction of ROS levels may be an effective strategy to delay IVDD. In this study, we assessed whether umbilical cord mesenchymal stem cell-exosomes (UCMSC-exos) can be used to treat IVDD by suppressing ROS production caused by mitochondrial dysfunction.
Materials and methods
Human UCMSC-exos were isolated and identified. Nucleus pulposus cells (NPCs) were stimulated with H2O2 in the presence or absence of exosomes. Then, 4D label free quantitative (4D-LFQ) proteomics were used to analyze the differentially expressed (DE) proteins. Mitochondrial membrane potential (MMP), mitochondrial ROS and protein levels were determined via immunofluorescence staining, flow cytometry and western blotting respectively. Additionally, high-throughput sequencing was performed to identify the DE miRNAs in NPCs. Finally, therapeutic effects of UCMSC-exos were investigated in a puncture-induced IVDD rat model. Degenerative grades of rat IVDs were assessed using magnetic resonance imaging and histochemical staining.
Results
UCMSC-exos effectively improved the viability of NPCs and restored the expression of the extracellular matrix (ECM) proteins, collagen type II alpha-1 (COL2A1) and matrix metalloproteinase-13 induced by H2O2. Additionally, UCMSC-exos not only reduced the total intracellular ROS and mitochondrial superoxide levels, but also increased MMP in pathological NPCs. 4D-LFQ proteomics and western blotting further revealed that UCMSC-exos up-regulated the levels of the mitochondrial protein, mitochondrial transcription factor A (TFAM), in H2O2-induced NPCs. High-throughput sequencing and qRT-PCR uncovered that UCMSC-exos down-regulated the levels of miR-194-5p, a potential negative regulator of TFAM, induced by H2O2. Finally, in vivo results showed that UCMSC-exos injection improved the histopathological structure and enhanced the expression levels of COL2A1 and TFAM in the rat IVDD model.
Conclusions
Our findings suggest that UCMSC-exos promote ECM synthesis, relieve mitochondrial oxidative stress, and attenuate mitochondrial dysfunction in vitro and in vivo, thereby effectively treating IVDD.
The translational potential of this article
This study provides solid experimental data support for the therapeutic effects of UCMSC-exos on IVDD, suggesting that UCMSC-exos will be a promising nanotherapy for IVDD.
期刊介绍:
The Journal of Orthopaedic Translation (JOT) is the official peer-reviewed, open access journal of the Chinese Speaking Orthopaedic Society (CSOS) and the International Chinese Musculoskeletal Research Society (ICMRS). It is published quarterly, in January, April, July and October, by Elsevier.