{"title":"随机晶粒模型非线性函数的缩放极限,在布尔格斯方程中的应用","authors":"Donatas Surgailis","doi":"10.1016/j.spa.2024.104390","DOIUrl":null,"url":null,"abstract":"<div><p>We study scaling limits of nonlinear functions <span><math><mi>G</mi></math></span> of random grain model <span><math><mi>X</mi></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with long-range dependence and marginal Poisson distribution. Following Kaj et al. (2007) we assume that the intensity <span><math><mi>M</mi></math></span> of the underlying Poisson process of grains increases together with the scaling parameter <span><math><mi>λ</mi></math></span> as <span><math><mrow><mi>M</mi><mo>=</mo><msup><mrow><mi>λ</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></math></span>, for some <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>. The results are applicable to the Boolean model and exponential <span><math><mi>G</mi></math></span> and rely on an expansion of <span><math><mi>G</mi></math></span> in Charlier polynomials and a generalization of Mehler’s formula. Application to solution of Burgers’ equation with initial aggregated random grain data is discussed.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"174 ","pages":"Article 104390"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling limits of nonlinear functions of random grain model, with application to Burgers’ equation\",\"authors\":\"Donatas Surgailis\",\"doi\":\"10.1016/j.spa.2024.104390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study scaling limits of nonlinear functions <span><math><mi>G</mi></math></span> of random grain model <span><math><mi>X</mi></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with long-range dependence and marginal Poisson distribution. Following Kaj et al. (2007) we assume that the intensity <span><math><mi>M</mi></math></span> of the underlying Poisson process of grains increases together with the scaling parameter <span><math><mi>λ</mi></math></span> as <span><math><mrow><mi>M</mi><mo>=</mo><msup><mrow><mi>λ</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></math></span>, for some <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span>. The results are applicable to the Boolean model and exponential <span><math><mi>G</mi></math></span> and rely on an expansion of <span><math><mi>G</mi></math></span> in Charlier polynomials and a generalization of Mehler’s formula. Application to solution of Burgers’ equation with initial aggregated random grain data is discussed.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"174 \",\"pages\":\"Article 104390\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924000966\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924000966","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的是具有长程依赖性和边际泊松分布的 Rd 上随机晶粒模型 X 的非线性函数 G 的缩放极限。根据 Kaj 等人(2007 年)的研究,我们假定在某个 γ>0 条件下,谷粒的基本泊松过程的强度 M 随缩放参数 λ 的增大而增大,即 M=λγ。这些结果适用于布尔模型和指数 G,并依赖于 G 在夏利多项式中的展开和梅勒公式的广义化。讨论了布尔格斯方程与初始聚合随机粒度数据的求解应用。
Scaling limits of nonlinear functions of random grain model, with application to Burgers’ equation
We study scaling limits of nonlinear functions of random grain model on with long-range dependence and marginal Poisson distribution. Following Kaj et al. (2007) we assume that the intensity of the underlying Poisson process of grains increases together with the scaling parameter as , for some . The results are applicable to the Boolean model and exponential and rely on an expansion of in Charlier polynomials and a generalization of Mehler’s formula. Application to solution of Burgers’ equation with initial aggregated random grain data is discussed.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.