随机晶粒模型非线性函数的缩放极限,在布尔格斯方程中的应用

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Donatas Surgailis
{"title":"随机晶粒模型非线性函数的缩放极限,在布尔格斯方程中的应用","authors":"Donatas Surgailis","doi":"10.1016/j.spa.2024.104390","DOIUrl":null,"url":null,"abstract":"<div><p>We study scaling limits of nonlinear functions <span><math><mi>G</mi></math></span> of random grain model <span><math><mi>X</mi></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with long-range dependence and marginal Poisson distribution. Following Kaj et al. (2007) we assume that the intensity <span><math><mi>M</mi></math></span> of the underlying Poisson process of grains increases together with the scaling parameter <span><math><mi>λ</mi></math></span> as <span><math><mrow><mi>M</mi><mo>=</mo><msup><mrow><mi>λ</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></math></span>, for some <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The results are applicable to the Boolean model and exponential <span><math><mi>G</mi></math></span> and rely on an expansion of <span><math><mi>G</mi></math></span> in Charlier polynomials and a generalization of Mehler’s formula. Application to solution of Burgers’ equation with initial aggregated random grain data is discussed.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"174 ","pages":"Article 104390"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling limits of nonlinear functions of random grain model, with application to Burgers’ equation\",\"authors\":\"Donatas Surgailis\",\"doi\":\"10.1016/j.spa.2024.104390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study scaling limits of nonlinear functions <span><math><mi>G</mi></math></span> of random grain model <span><math><mi>X</mi></math></span> on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with long-range dependence and marginal Poisson distribution. Following Kaj et al. (2007) we assume that the intensity <span><math><mi>M</mi></math></span> of the underlying Poisson process of grains increases together with the scaling parameter <span><math><mi>λ</mi></math></span> as <span><math><mrow><mi>M</mi><mo>=</mo><msup><mrow><mi>λ</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></math></span>, for some <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. The results are applicable to the Boolean model and exponential <span><math><mi>G</mi></math></span> and rely on an expansion of <span><math><mi>G</mi></math></span> in Charlier polynomials and a generalization of Mehler’s formula. Application to solution of Burgers’ equation with initial aggregated random grain data is discussed.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"174 \",\"pages\":\"Article 104390\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924000966\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924000966","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是具有长程依赖性和边际泊松分布的 Rd 上随机晶粒模型 X 的非线性函数 G 的缩放极限。根据 Kaj 等人(2007 年)的研究,我们假定在某个 γ>0 条件下,谷粒的基本泊松过程的强度 M 随缩放参数 λ 的增大而增大,即 M=λγ。这些结果适用于布尔模型和指数 G,并依赖于 G 在夏利多项式中的展开和梅勒公式的广义化。讨论了布尔格斯方程与初始聚合随机粒度数据的求解应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling limits of nonlinear functions of random grain model, with application to Burgers’ equation

We study scaling limits of nonlinear functions G of random grain model X on Rd with long-range dependence and marginal Poisson distribution. Following Kaj et al. (2007) we assume that the intensity M of the underlying Poisson process of grains increases together with the scaling parameter λ as M=λγ, for some γ>0. The results are applicable to the Boolean model and exponential G and rely on an expansion of G in Charlier polynomials and a generalization of Mehler’s formula. Application to solution of Burgers’ equation with initial aggregated random grain data is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信