Motomitsu Kitaoka, Ayu Takano, Mei Takahashi, Yoshiki Yamakawa, Shinya Fushinobu, Nobuyuki Yoshida
{"title":"碱性条件下 3-Ketoglucosides 在 340 纳米波长处吸收的分子基础。","authors":"Motomitsu Kitaoka, Ayu Takano, Mei Takahashi, Yoshiki Yamakawa, Shinya Fushinobu, Nobuyuki Yoshida","doi":"10.5458/jag.jag.JAG-2023_0014","DOIUrl":null,"url":null,"abstract":"<p><p>Transient absorption at 340 nm under alkaline conditions has long been used to detect the presence of 3-keto-<i>O</i>-glycosides without understanding the molecular basis of the absorbance. The time course of <i>A</i><sub>340 nm</sub> for the alkaline treatment of 3-ketolevoglucosan, an intramolecular 3-keto-<i>O</i>-glycoside, was investigated to identify the three products generated through alkaline treatment. By comparing the spectra of these compounds under neutral and alkaline conditions, we identified 1,5-anhydro-D-<i>erythro</i>-hex-1-en-3-ulose (2-hydroxy-3-keto-D-glucal) as being the compound responsible for the absorption.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"71 1","pages":"9-13"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116085/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular Basis of Absorption at 340 nm of 3-Ketoglucosides under Alkaline Conditions.\",\"authors\":\"Motomitsu Kitaoka, Ayu Takano, Mei Takahashi, Yoshiki Yamakawa, Shinya Fushinobu, Nobuyuki Yoshida\",\"doi\":\"10.5458/jag.jag.JAG-2023_0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transient absorption at 340 nm under alkaline conditions has long been used to detect the presence of 3-keto-<i>O</i>-glycosides without understanding the molecular basis of the absorbance. The time course of <i>A</i><sub>340 nm</sub> for the alkaline treatment of 3-ketolevoglucosan, an intramolecular 3-keto-<i>O</i>-glycoside, was investigated to identify the three products generated through alkaline treatment. By comparing the spectra of these compounds under neutral and alkaline conditions, we identified 1,5-anhydro-D-<i>erythro</i>-hex-1-en-3-ulose (2-hydroxy-3-keto-D-glucal) as being the compound responsible for the absorption.</p>\",\"PeriodicalId\":14999,\"journal\":{\"name\":\"Journal of applied glycoscience\",\"volume\":\"71 1\",\"pages\":\"9-13\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116085/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied glycoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5458/jag.jag.JAG-2023_0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2023_0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular Basis of Absorption at 340 nm of 3-Ketoglucosides under Alkaline Conditions.
Transient absorption at 340 nm under alkaline conditions has long been used to detect the presence of 3-keto-O-glycosides without understanding the molecular basis of the absorbance. The time course of A340 nm for the alkaline treatment of 3-ketolevoglucosan, an intramolecular 3-keto-O-glycoside, was investigated to identify the three products generated through alkaline treatment. By comparing the spectra of these compounds under neutral and alkaline conditions, we identified 1,5-anhydro-D-erythro-hex-1-en-3-ulose (2-hydroxy-3-keto-D-glucal) as being the compound responsible for the absorption.