无旋转惯性粘弹性剪切梁模型解的渐近行为:一般和最优衰减结果

IF 1 4区 数学 Q1 MATHEMATICS
Adel M. Al-Mahdi
{"title":"无旋转惯性粘弹性剪切梁模型解的渐近行为:一般和最优衰减结果","authors":"Adel M. Al-Mahdi","doi":"10.1515/math-2024-0011","DOIUrl":null,"url":null,"abstract":"In this study, we consider a viscoelastic Shear beam model with no rotary inertia. Specifically, we study <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mtable displaystyle=\"true\" columnspacing=\"0.33em\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:msub> <m:mrow> <m:mi>ρ</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mo>−</m:mo> <m:mi>κ</m:mi> <m:msub> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>ψ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo>∗</m:mo> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"center\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mo>−</m:mo> <m:mi>b</m:mi> <m:msub> <m:mrow> <m:mi>ψ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>κ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>ψ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"center\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:math> <jats:tex-math>\\begin{array}{rcl}{\\rho }_{1}{\\varphi }_{tt}-\\kappa {\\left({\\varphi }_{x}+\\psi )}_{x}+\\left(g\\ast {\\varphi }_{xx})\\left(t)&amp; =&amp; 0,\\\\ -b{\\psi }_{xx}+\\kappa \\left({\\varphi }_{x}+\\psi )&amp; =&amp; 0,\\end{array}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where the convolution memory function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> <jats:tex-math>g</jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to a class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{L}^{1}\\left(0,\\infty )</jats:tex-math> </jats:alternatives> </jats:inline-formula> functions that satisfies <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mi>g</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mo>−</m:mo> <m:mi>ξ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">ϒ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"1.0em\"/> <m:mrow> <m:mo>∀</m:mo> </m:mrow> <m:mi>t</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:math> <jats:tex-math>g^{\\prime} \\left(t)\\le -\\xi \\left(t)\\Upsilon \\left(g\\left(t)),\\hspace{1.0em}\\forall t\\ge 0,</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ξ</m:mi> </m:math> <jats:tex-math>\\xi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a positive nonincreasing differentiable function and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">ϒ</m:mi> </m:math> <jats:tex-math>\\Upsilon </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an increasing and convex function near the origin. Using just this general assumptions on the behavior of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> <jats:tex-math>g</jats:tex-math> </jats:alternatives> </jats:inline-formula> at infinity, we provide optimal and explicit general energy decay rates from which we recover the exponential and polynomial rates when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">ϒ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\Upsilon \\left(s)={s}^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula> covers the full admissible range <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left[1,2)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Given this degree of generality, our results improve some of earlier related results in the literature.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"132 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of solutions of a viscoelastic Shear beam model with no rotary inertia: General and optimal decay results\",\"authors\":\"Adel M. Al-Mahdi\",\"doi\":\"10.1515/math-2024-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we consider a viscoelastic Shear beam model with no rotary inertia. Specifically, we study <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mtable displaystyle=\\\"true\\\" columnspacing=\\\"0.33em\\\"> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:msub> <m:mrow> <m:mi>ρ</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mo>−</m:mo> <m:mi>κ</m:mi> <m:msub> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>ψ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo>∗</m:mo> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"center\\\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mo>−</m:mo> <m:mi>b</m:mi> <m:msub> <m:mrow> <m:mi>ψ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>κ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>ψ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"center\\\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:math> <jats:tex-math>\\\\begin{array}{rcl}{\\\\rho }_{1}{\\\\varphi }_{tt}-\\\\kappa {\\\\left({\\\\varphi }_{x}+\\\\psi )}_{x}+\\\\left(g\\\\ast {\\\\varphi }_{xx})\\\\left(t)&amp; =&amp; 0,\\\\\\\\ -b{\\\\psi }_{xx}+\\\\kappa \\\\left({\\\\varphi }_{x}+\\\\psi )&amp; =&amp; 0,\\\\end{array}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where the convolution memory function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>g</m:mi> </m:math> <jats:tex-math>g</jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to a class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{L}^{1}\\\\left(0,\\\\infty )</jats:tex-math> </jats:alternatives> </jats:inline-formula> functions that satisfies <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mi>g</m:mi> <m:mo accent=\\\"false\\\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mo>−</m:mo> <m:mi>ξ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">ϒ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\\\"1.0em\\\"/> <m:mrow> <m:mo>∀</m:mo> </m:mrow> <m:mi>t</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:math> <jats:tex-math>g^{\\\\prime} \\\\left(t)\\\\le -\\\\xi \\\\left(t)\\\\Upsilon \\\\left(g\\\\left(t)),\\\\hspace{1.0em}\\\\forall t\\\\ge 0,</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ξ</m:mi> </m:math> <jats:tex-math>\\\\xi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a positive nonincreasing differentiable function and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_006.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">ϒ</m:mi> </m:math> <jats:tex-math>\\\\Upsilon </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an increasing and convex function near the origin. Using just this general assumptions on the behavior of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_007.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>g</m:mi> </m:math> <jats:tex-math>g</jats:tex-math> </jats:alternatives> </jats:inline-formula> at infinity, we provide optimal and explicit general energy decay rates from which we recover the exponential and polynomial rates when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_008.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">ϒ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\\\Upsilon \\\\left(s)={s}^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_009.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula> covers the full admissible range <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_010.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left[1,2)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Given this degree of generality, our results improve some of earlier related results in the literature.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们考虑的是无转动惯量的粘弹性剪切梁模型。具体来说,我们研究 ρ 1 φ t t - κ ( φ x + ψ ) x + ( g ∗ φ x x ) ( t ) = 0 、 - b ψ x x + κ ( φ x + ψ ) = 0 , \begin{array}{rcl}{rho }_{1}{\varphi }_{tt}-\kappa {\left({\varphi }_{x}+\psi )}_{x}+\left(g\ast {\varphi }_{xx})\left(t)&;=& 0,( -b{\psi }_{xx}+\kappa \left({\varphi }_{x}+\psi )& =&;0,end{array} 其中卷積記憶函數 g g 屬於 L 1 ( 0 , ∞ ) {L}^{1}left(0,infty)函數的一類,它滿足 g ′ ( t ) ≤ - ξ ( t ) ϒ ( g ( t ) , ∀ t ≥ 0 , g^{prime} le -\xi \left(t)\Upsilon \left(g\left(t)),\hspace{1.0em}\forall tge 0, 其中ξ \xi是一個正的非遞增的可微分函數,而ϒ \Upsilon是一個靠近原點的遞增的凸函數。僅僅利用這個關於g g在無限處行為的一般假設,我們提供了最佳的和明確的一般能量衰減率,當 ÕLu_3D2↩ ( s ) = s p \Upsilon \left(s)={s}^{p} 和 p p 覆蓋了全部可允許的範圍 [ 1 , 2 ]時,我們可以從中恢復指數率和多项式率。 \left[1,2) 。鉴于这种普遍性,我们的结果改进了文献中早期的一些相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior of solutions of a viscoelastic Shear beam model with no rotary inertia: General and optimal decay results
In this study, we consider a viscoelastic Shear beam model with no rotary inertia. Specifically, we study ρ 1 φ t t κ ( φ x + ψ ) x + ( g φ x x ) ( t ) = 0 , b ψ x x + κ ( φ x + ψ ) = 0 , \begin{array}{rcl}{\rho }_{1}{\varphi }_{tt}-\kappa {\left({\varphi }_{x}+\psi )}_{x}+\left(g\ast {\varphi }_{xx})\left(t)& =& 0,\\ -b{\psi }_{xx}+\kappa \left({\varphi }_{x}+\psi )& =& 0,\end{array} where the convolution memory function g g belongs to a class of L 1 ( 0 , ) {L}^{1}\left(0,\infty ) functions that satisfies g ( t ) ξ ( t ) ϒ ( g ( t ) ) , t 0 , g^{\prime} \left(t)\le -\xi \left(t)\Upsilon \left(g\left(t)),\hspace{1.0em}\forall t\ge 0, where ξ \xi is a positive nonincreasing differentiable function and ϒ \Upsilon is an increasing and convex function near the origin. Using just this general assumptions on the behavior of g g at infinity, we provide optimal and explicit general energy decay rates from which we recover the exponential and polynomial rates when ϒ ( s ) = s p \Upsilon \left(s)={s}^{p} and p p covers the full admissible range [ 1 , 2 ) \left[1,2) . Given this degree of generality, our results improve some of earlier related results in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信