{"title":"无旋转惯性粘弹性剪切梁模型解的渐近行为:一般和最优衰减结果","authors":"Adel M. Al-Mahdi","doi":"10.1515/math-2024-0011","DOIUrl":null,"url":null,"abstract":"In this study, we consider a viscoelastic Shear beam model with no rotary inertia. Specifically, we study <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mtable displaystyle=\"true\" columnspacing=\"0.33em\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:msub> <m:mrow> <m:mi>ρ</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mo>−</m:mo> <m:mi>κ</m:mi> <m:msub> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>ψ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo>∗</m:mo> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"center\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mo>−</m:mo> <m:mi>b</m:mi> <m:msub> <m:mrow> <m:mi>ψ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>κ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>ψ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"center\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:math> <jats:tex-math>\\begin{array}{rcl}{\\rho }_{1}{\\varphi }_{tt}-\\kappa {\\left({\\varphi }_{x}+\\psi )}_{x}+\\left(g\\ast {\\varphi }_{xx})\\left(t)& =& 0,\\\\ -b{\\psi }_{xx}+\\kappa \\left({\\varphi }_{x}+\\psi )& =& 0,\\end{array}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where the convolution memory function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> <jats:tex-math>g</jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to a class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{L}^{1}\\left(0,\\infty )</jats:tex-math> </jats:alternatives> </jats:inline-formula> functions that satisfies <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mi>g</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mo>−</m:mo> <m:mi>ξ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">ϒ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"1.0em\"/> <m:mrow> <m:mo>∀</m:mo> </m:mrow> <m:mi>t</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:math> <jats:tex-math>g^{\\prime} \\left(t)\\le -\\xi \\left(t)\\Upsilon \\left(g\\left(t)),\\hspace{1.0em}\\forall t\\ge 0,</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ξ</m:mi> </m:math> <jats:tex-math>\\xi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a positive nonincreasing differentiable function and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">ϒ</m:mi> </m:math> <jats:tex-math>\\Upsilon </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an increasing and convex function near the origin. Using just this general assumptions on the behavior of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> <jats:tex-math>g</jats:tex-math> </jats:alternatives> </jats:inline-formula> at infinity, we provide optimal and explicit general energy decay rates from which we recover the exponential and polynomial rates when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">ϒ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\Upsilon \\left(s)={s}^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula> covers the full admissible range <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0011_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left[1,2)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Given this degree of generality, our results improve some of earlier related results in the literature.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"132 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior of solutions of a viscoelastic Shear beam model with no rotary inertia: General and optimal decay results\",\"authors\":\"Adel M. Al-Mahdi\",\"doi\":\"10.1515/math-2024-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we consider a viscoelastic Shear beam model with no rotary inertia. Specifically, we study <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mtable displaystyle=\\\"true\\\" columnspacing=\\\"0.33em\\\"> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:msub> <m:mrow> <m:mi>ρ</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mo>−</m:mo> <m:mi>κ</m:mi> <m:msub> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>ψ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo>∗</m:mo> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"center\\\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:mo>−</m:mo> <m:mi>b</m:mi> <m:msub> <m:mrow> <m:mi>ψ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>κ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mi>ψ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"center\\\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:math> <jats:tex-math>\\\\begin{array}{rcl}{\\\\rho }_{1}{\\\\varphi }_{tt}-\\\\kappa {\\\\left({\\\\varphi }_{x}+\\\\psi )}_{x}+\\\\left(g\\\\ast {\\\\varphi }_{xx})\\\\left(t)& =& 0,\\\\\\\\ -b{\\\\psi }_{xx}+\\\\kappa \\\\left({\\\\varphi }_{x}+\\\\psi )& =& 0,\\\\end{array}</jats:tex-math> </jats:alternatives> </jats:disp-formula> where the convolution memory function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>g</m:mi> </m:math> <jats:tex-math>g</jats:tex-math> </jats:alternatives> </jats:inline-formula> belongs to a class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{L}^{1}\\\\left(0,\\\\infty )</jats:tex-math> </jats:alternatives> </jats:inline-formula> functions that satisfies <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mi>g</m:mi> <m:mo accent=\\\"false\\\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mo>−</m:mo> <m:mi>ξ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">ϒ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\\\"1.0em\\\"/> <m:mrow> <m:mo>∀</m:mo> </m:mrow> <m:mi>t</m:mi> <m:mo>≥</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:math> <jats:tex-math>g^{\\\\prime} \\\\left(t)\\\\le -\\\\xi \\\\left(t)\\\\Upsilon \\\\left(g\\\\left(t)),\\\\hspace{1.0em}\\\\forall t\\\\ge 0,</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ξ</m:mi> </m:math> <jats:tex-math>\\\\xi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a positive nonincreasing differentiable function and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_006.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">ϒ</m:mi> </m:math> <jats:tex-math>\\\\Upsilon </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an increasing and convex function near the origin. Using just this general assumptions on the behavior of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_007.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>g</m:mi> </m:math> <jats:tex-math>g</jats:tex-math> </jats:alternatives> </jats:inline-formula> at infinity, we provide optimal and explicit general energy decay rates from which we recover the exponential and polynomial rates when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_008.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">ϒ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\\\Upsilon \\\\left(s)={s}^{p}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_009.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula> covers the full admissible range <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0011_eq_010.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left[1,2)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Given this degree of generality, our results improve some of earlier related results in the literature.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,我们考虑的是无转动惯量的粘弹性剪切梁模型。具体来说,我们研究 ρ 1 φ t t - κ ( φ x + ψ ) x + ( g ∗ φ x x ) ( t ) = 0 、 - b ψ x x + κ ( φ x + ψ ) = 0 , \begin{array}{rcl}{rho }_{1}{\varphi }_{tt}-\kappa {\left({\varphi }_{x}+\psi )}_{x}+\left(g\ast {\varphi }_{xx})\left(t)&;=& 0,( -b{\psi }_{xx}+\kappa \left({\varphi }_{x}+\psi )& =&;0,end{array} 其中卷積記憶函數 g g 屬於 L 1 ( 0 , ∞ ) {L}^{1}left(0,infty)函數的一類,它滿足 g ′ ( t ) ≤ - ξ ( t ) ϒ ( g ( t ) , ∀ t ≥ 0 , g^{prime} le -\xi \left(t)\Upsilon \left(g\left(t)),\hspace{1.0em}\forall tge 0, 其中ξ \xi是一個正的非遞增的可微分函數,而ϒ \Upsilon是一個靠近原點的遞增的凸函數。僅僅利用這個關於g g在無限處行為的一般假設,我們提供了最佳的和明確的一般能量衰減率,當 ÕLu_3D2↩ ( s ) = s p \Upsilon \left(s)={s}^{p} 和 p p 覆蓋了全部可允許的範圍 [ 1 , 2 ]時,我們可以從中恢復指數率和多项式率。 \left[1,2) 。鉴于这种普遍性,我们的结果改进了文献中早期的一些相关结果。
Asymptotic behavior of solutions of a viscoelastic Shear beam model with no rotary inertia: General and optimal decay results
In this study, we consider a viscoelastic Shear beam model with no rotary inertia. Specifically, we study ρ1φtt−κ(φx+ψ)x+(g∗φxx)(t)=0,−bψxx+κ(φx+ψ)=0,\begin{array}{rcl}{\rho }_{1}{\varphi }_{tt}-\kappa {\left({\varphi }_{x}+\psi )}_{x}+\left(g\ast {\varphi }_{xx})\left(t)& =& 0,\\ -b{\psi }_{xx}+\kappa \left({\varphi }_{x}+\psi )& =& 0,\end{array} where the convolution memory function gg belongs to a class of L1(0,∞){L}^{1}\left(0,\infty ) functions that satisfies g′(t)≤−ξ(t)ϒ(g(t)),∀t≥0,g^{\prime} \left(t)\le -\xi \left(t)\Upsilon \left(g\left(t)),\hspace{1.0em}\forall t\ge 0, where ξ\xi is a positive nonincreasing differentiable function and ϒ\Upsilon is an increasing and convex function near the origin. Using just this general assumptions on the behavior of gg at infinity, we provide optimal and explicit general energy decay rates from which we recover the exponential and polynomial rates when ϒ(s)=sp\Upsilon \left(s)={s}^{p} and pp covers the full admissible range [1,2)\left[1,2). Given this degree of generality, our results improve some of earlier related results in the literature.
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: