Dennis H.A. Vermeulen, Michiel L. J. Baatsen, Anna S. von der Heydt
{"title":"晚始新世温暖对南极洲初期冰川形成的反应","authors":"Dennis H.A. Vermeulen, Michiel L. J. Baatsen, Anna S. von der Heydt","doi":"10.5194/cp-2024-30","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> The Eocene-Oligocene Transition (EOT) is marked by a sudden δ<sup>18</sup>O excursion occurring in two distinct phases, ~500 ky apart. These phases signal a shift from the warm Middle- to Late-Eocene greenhouse climate to cooler conditions, with global surface air temperatures decreasing by 3–5 °C and the emergence of the first continent-wide Antarctic Ice Sheet (AIS). While ice-sheet modelling suggests that ice sheet growth can be triggered by declining <em>p</em>CO<sub>2</sub>, it still remains unclear how this transition has been initiated, in particular the first growth phase that seems to be related to oceanic and atmospheric cooling rather than ice sheet growth. Recent climate model simulations of the Late-Eocene show improved accuracy but depict climatic conditions that are not conducive to the survival of incipient ice sheets throughout the summer season. This study therefore examines whether it is plausible to develop ice sheets of sufficient scale to trigger the feedback mechanism(s) required to disrupt the atmospheric regime above the Antarctic continent during warm Late-Eocene summers and establish more favourable conditions for ice expansion. We thereby aim to assess the stability of an incipient AIS under varying radiative, orbital and cryospheric forcing. To do so, we evaluate Community Earth System Model 1.0.5 simulations, using a 38 Ma geo- and topographical reconstruction, considering different radiative (4 and 2 pre-industrial carbon) and orbital (present-day and low summer insolation) forcings. The climatic conditions prevailing during (the lead-up to) the EOT can be characterised as extremely seasonal and monsoonal, featuring a short yet intense summer period and contrasting cold winters — highly inhospitable to ice sheet growth for most of the continent, as limited snow accumulation is expected to survive the summer season. A narrow convergence zone with moist convection around the region where sub-cloud equivalent potential temperature is high is shown to exhibit a ring-like structure, advecting moist surface air advected from the Southern Ocean. This advection leads to high values of moist static energy and subsequent precipitation in these regions. To assess the influence of cryospheric forcing, we conducted another simulation, with regional, moderately-sized ice sheets imposed on the continent, to investigate their stability and influence on the atmospheric circulation. Regionally, these relatively small ice sheets respond strongly to radiative and orbital forcing, and demonstrate remarkably favourable self-sustaining and even expansion potential under 2 PIC and low summer insolation conditions. This emphasises a significant hysteresis effect for local and/or regional ice sheets on the Antarctic continent, suggesting the potential for a significant volume of ice on the Antarctic continent without an imminent full glaciation prior to the EOT.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"73 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of Late-Eocene warmth to incipient glaciation on Antarctica\",\"authors\":\"Dennis H.A. Vermeulen, Michiel L. J. Baatsen, Anna S. von der Heydt\",\"doi\":\"10.5194/cp-2024-30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> The Eocene-Oligocene Transition (EOT) is marked by a sudden δ<sup>18</sup>O excursion occurring in two distinct phases, ~500 ky apart. These phases signal a shift from the warm Middle- to Late-Eocene greenhouse climate to cooler conditions, with global surface air temperatures decreasing by 3–5 °C and the emergence of the first continent-wide Antarctic Ice Sheet (AIS). While ice-sheet modelling suggests that ice sheet growth can be triggered by declining <em>p</em>CO<sub>2</sub>, it still remains unclear how this transition has been initiated, in particular the first growth phase that seems to be related to oceanic and atmospheric cooling rather than ice sheet growth. Recent climate model simulations of the Late-Eocene show improved accuracy but depict climatic conditions that are not conducive to the survival of incipient ice sheets throughout the summer season. This study therefore examines whether it is plausible to develop ice sheets of sufficient scale to trigger the feedback mechanism(s) required to disrupt the atmospheric regime above the Antarctic continent during warm Late-Eocene summers and establish more favourable conditions for ice expansion. We thereby aim to assess the stability of an incipient AIS under varying radiative, orbital and cryospheric forcing. To do so, we evaluate Community Earth System Model 1.0.5 simulations, using a 38 Ma geo- and topographical reconstruction, considering different radiative (4 and 2 pre-industrial carbon) and orbital (present-day and low summer insolation) forcings. The climatic conditions prevailing during (the lead-up to) the EOT can be characterised as extremely seasonal and monsoonal, featuring a short yet intense summer period and contrasting cold winters — highly inhospitable to ice sheet growth for most of the continent, as limited snow accumulation is expected to survive the summer season. A narrow convergence zone with moist convection around the region where sub-cloud equivalent potential temperature is high is shown to exhibit a ring-like structure, advecting moist surface air advected from the Southern Ocean. This advection leads to high values of moist static energy and subsequent precipitation in these regions. To assess the influence of cryospheric forcing, we conducted another simulation, with regional, moderately-sized ice sheets imposed on the continent, to investigate their stability and influence on the atmospheric circulation. Regionally, these relatively small ice sheets respond strongly to radiative and orbital forcing, and demonstrate remarkably favourable self-sustaining and even expansion potential under 2 PIC and low summer insolation conditions. This emphasises a significant hysteresis effect for local and/or regional ice sheets on the Antarctic continent, suggesting the potential for a significant volume of ice on the Antarctic continent without an imminent full glaciation prior to the EOT.\",\"PeriodicalId\":10332,\"journal\":{\"name\":\"Climate of The Past\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate of The Past\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/cp-2024-30\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/cp-2024-30","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Response of Late-Eocene warmth to incipient glaciation on Antarctica
Abstract. The Eocene-Oligocene Transition (EOT) is marked by a sudden δ18O excursion occurring in two distinct phases, ~500 ky apart. These phases signal a shift from the warm Middle- to Late-Eocene greenhouse climate to cooler conditions, with global surface air temperatures decreasing by 3–5 °C and the emergence of the first continent-wide Antarctic Ice Sheet (AIS). While ice-sheet modelling suggests that ice sheet growth can be triggered by declining pCO2, it still remains unclear how this transition has been initiated, in particular the first growth phase that seems to be related to oceanic and atmospheric cooling rather than ice sheet growth. Recent climate model simulations of the Late-Eocene show improved accuracy but depict climatic conditions that are not conducive to the survival of incipient ice sheets throughout the summer season. This study therefore examines whether it is plausible to develop ice sheets of sufficient scale to trigger the feedback mechanism(s) required to disrupt the atmospheric regime above the Antarctic continent during warm Late-Eocene summers and establish more favourable conditions for ice expansion. We thereby aim to assess the stability of an incipient AIS under varying radiative, orbital and cryospheric forcing. To do so, we evaluate Community Earth System Model 1.0.5 simulations, using a 38 Ma geo- and topographical reconstruction, considering different radiative (4 and 2 pre-industrial carbon) and orbital (present-day and low summer insolation) forcings. The climatic conditions prevailing during (the lead-up to) the EOT can be characterised as extremely seasonal and monsoonal, featuring a short yet intense summer period and contrasting cold winters — highly inhospitable to ice sheet growth for most of the continent, as limited snow accumulation is expected to survive the summer season. A narrow convergence zone with moist convection around the region where sub-cloud equivalent potential temperature is high is shown to exhibit a ring-like structure, advecting moist surface air advected from the Southern Ocean. This advection leads to high values of moist static energy and subsequent precipitation in these regions. To assess the influence of cryospheric forcing, we conducted another simulation, with regional, moderately-sized ice sheets imposed on the continent, to investigate their stability and influence on the atmospheric circulation. Regionally, these relatively small ice sheets respond strongly to radiative and orbital forcing, and demonstrate remarkably favourable self-sustaining and even expansion potential under 2 PIC and low summer insolation conditions. This emphasises a significant hysteresis effect for local and/or regional ice sheets on the Antarctic continent, suggesting the potential for a significant volume of ice on the Antarctic continent without an imminent full glaciation prior to the EOT.
期刊介绍:
Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope.
The main subject areas are the following:
reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;
development and validation of new proxies, improvements of the precision and accuracy of proxy data;
theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales;
simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.