自偶几乎-凯勒四漫游

IF 0.6 3区 数学 Q3 MATHEMATICS
Inyoung Kim
{"title":"自偶几乎-凯勒四漫游","authors":"Inyoung Kim","doi":"10.1007/s10455-024-09958-9","DOIUrl":null,"url":null,"abstract":"<div><p>We classify compact self-dual almost-Kähler four-manifolds of positive type and zero type. In particular, using LeBrun’s result, we show that any self-dual almost-Kähler metric on a manifold which is diffeomorphic to <span>\\({{\\mathbb {C}}}{{\\mathbb {P}}}_{2}\\)</span> is the Fubini-Study metric on <span>\\({{\\mathbb {C}}}{{\\mathbb {P}}}_{2}\\)</span> up to rescaling. In case of negative type, we classify compact self-dual almost-Kähler four-manifolds with <i>J</i>-invariant ricci tensor.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-dual almost-Kähler four-manifolds\",\"authors\":\"Inyoung Kim\",\"doi\":\"10.1007/s10455-024-09958-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We classify compact self-dual almost-Kähler four-manifolds of positive type and zero type. In particular, using LeBrun’s result, we show that any self-dual almost-Kähler metric on a manifold which is diffeomorphic to <span>\\\\({{\\\\mathbb {C}}}{{\\\\mathbb {P}}}_{2}\\\\)</span> is the Fubini-Study metric on <span>\\\\({{\\\\mathbb {C}}}{{\\\\mathbb {P}}}_{2}\\\\)</span> up to rescaling. In case of negative type, we classify compact self-dual almost-Kähler four-manifolds with <i>J</i>-invariant ricci tensor.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-024-09958-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09958-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对正型和零型的紧凑自偶近-凯勒四流形进行了分类。特别是,利用勒布伦的结果,我们证明了任何与 \({{\mathbb {C}}}{{\mathbb {P}}}_{2}\) 差同的流形上的自偶近-凯勒度量都是\({{\mathbb {C}}}{{\mathbb {P}}}}_{2}\) 上的富比尼-斯图迪度量,直到重缩放。在负类型的情况下,我们分类了具有 J 不变里奇张量的紧凑自偶近凯勒四芒星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-dual almost-Kähler four-manifolds

We classify compact self-dual almost-Kähler four-manifolds of positive type and zero type. In particular, using LeBrun’s result, we show that any self-dual almost-Kähler metric on a manifold which is diffeomorphic to \({{\mathbb {C}}}{{\mathbb {P}}}_{2}\) is the Fubini-Study metric on \({{\mathbb {C}}}{{\mathbb {P}}}_{2}\) up to rescaling. In case of negative type, we classify compact self-dual almost-Kähler four-manifolds with J-invariant ricci tensor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信