非加性中和鲍文拓扑压力的变分原理

IF 1.9 3区 数学 Q1 MATHEMATICS
Congcong Qu, Lan Xu
{"title":"非加性中和鲍文拓扑压力的变分原理","authors":"Congcong Qu, Lan Xu","doi":"10.1007/s12346-024-01032-w","DOIUrl":null,"url":null,"abstract":"<p>Ovadia and Rodriguez-Hertz (Neutralized local entropy and dimension bounds for invariant measures. arXiv:2302.10874v2) defined the neutralized Bowen open ball as </p><span>$$B_n(x,e^{-n\\varepsilon })=\\{y\\in X:d(T^j(x),T^j(y))&lt;e^{-n\\varepsilon },\\forall 0\\le j\\le n-1\\}.$$</span><p>Yang et al. (Variational principle for neutralized Bowen topological entropy, arXiv:2303.01738v1) introduced the notion of neutralized Bowen topological entropy of subsets by replacing the usual Bowen ball by neutralized Bowen open ball. And they established variational principles for this notion. In this note, we extend this notion to the non-additive neutralized Bowen topological pressure and establish the variational principle for non-additive potentials with tempered distortion. Besides, we establish a Billingsley type theorem for non-additive neutralized Bowen topological pressure.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"12 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Principle for Non-additive Neutralized Bowen Topological Pressure\",\"authors\":\"Congcong Qu, Lan Xu\",\"doi\":\"10.1007/s12346-024-01032-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ovadia and Rodriguez-Hertz (Neutralized local entropy and dimension bounds for invariant measures. arXiv:2302.10874v2) defined the neutralized Bowen open ball as </p><span>$$B_n(x,e^{-n\\\\varepsilon })=\\\\{y\\\\in X:d(T^j(x),T^j(y))&lt;e^{-n\\\\varepsilon },\\\\forall 0\\\\le j\\\\le n-1\\\\}.$$</span><p>Yang et al. (Variational principle for neutralized Bowen topological entropy, arXiv:2303.01738v1) introduced the notion of neutralized Bowen topological entropy of subsets by replacing the usual Bowen ball by neutralized Bowen open ball. And they established variational principles for this notion. In this note, we extend this notion to the non-additive neutralized Bowen topological pressure and establish the variational principle for non-additive potentials with tempered distortion. Besides, we establish a Billingsley type theorem for non-additive neutralized Bowen topological pressure.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01032-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01032-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Ovadia 和 Rodriguez-Hertz (Neutralized local entropy and dimension bounds for invariant measures. arXiv:2302.10874v2)将中和鲍文开球定义为 $$B_n(x,e^{-n\varepsilon })=\{y\in X:d(T^j(x),T^j(y))<e^{-n\varepsilon },\forall 0\le j\le n-1/}。$$Yang et al. (Variational principle for neutralized Bowen topological entropy, arXiv:2303.01738v1)用中和鲍文开球代替通常的鲍文球,引入了子集的中和鲍文拓扑熵的概念。他们还为这一概念建立了变分原理。在本注释中,我们将这一概念扩展到非相加中和鲍文拓扑压力,并建立了有节制变形的非相加势的变分原理。此外,我们还建立了非正中和鲍温拓扑压力的比林斯利类型定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Principle for Non-additive Neutralized Bowen Topological Pressure

Ovadia and Rodriguez-Hertz (Neutralized local entropy and dimension bounds for invariant measures. arXiv:2302.10874v2) defined the neutralized Bowen open ball as

$$B_n(x,e^{-n\varepsilon })=\{y\in X:d(T^j(x),T^j(y))<e^{-n\varepsilon },\forall 0\le j\le n-1\}.$$

Yang et al. (Variational principle for neutralized Bowen topological entropy, arXiv:2303.01738v1) introduced the notion of neutralized Bowen topological entropy of subsets by replacing the usual Bowen ball by neutralized Bowen open ball. And they established variational principles for this notion. In this note, we extend this notion to the non-additive neutralized Bowen topological pressure and establish the variational principle for non-additive potentials with tempered distortion. Besides, we establish a Billingsley type theorem for non-additive neutralized Bowen topological pressure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信