单元矩阵的流动一维和三维实空间缠绕数

F. Hamano, T. Fukui
{"title":"单元矩阵的流动一维和三维实空间缠绕数","authors":"F. Hamano, T. Fukui","doi":"arxiv-2405.12537","DOIUrl":null,"url":null,"abstract":"The notion of the flow introduced by Kitaev is a manifestly topological\nformulation of the winding number on a real lattice. First, we show in this\npaper that the flow is quite useful for practical numerical computations for\nsystems without translational invariance. Second, we extend it to three\ndimensions. Namely, we derive a formula of the flow on a three-dimensional\nlattice, which corresponds to the conventional winding number when systems have\ntranslational invariance.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow of unitary matrices: Real-space winding numbers in one and three dimensions\",\"authors\":\"F. Hamano, T. Fukui\",\"doi\":\"arxiv-2405.12537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of the flow introduced by Kitaev is a manifestly topological\\nformulation of the winding number on a real lattice. First, we show in this\\npaper that the flow is quite useful for practical numerical computations for\\nsystems without translational invariance. Second, we extend it to three\\ndimensions. Namely, we derive a formula of the flow on a three-dimensional\\nlattice, which corresponds to the conventional winding number when systems have\\ntranslational invariance.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.12537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.12537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基塔耶夫(Kitaev)提出的流概念是实网格上缠绕数的一种明显拓扑形式。首先,我们在本文中表明,流对于没有平移不变性的系统的实际数值计算非常有用。其次,我们将其扩展到三维空间。也就是说,我们推导出了三维网格上的流动公式,当系统具有平移不变性时,它与传统的绕组数相对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow of unitary matrices: Real-space winding numbers in one and three dimensions
The notion of the flow introduced by Kitaev is a manifestly topological formulation of the winding number on a real lattice. First, we show in this paper that the flow is quite useful for practical numerical computations for systems without translational invariance. Second, we extend it to three dimensions. Namely, we derive a formula of the flow on a three-dimensional lattice, which corresponds to the conventional winding number when systems have translational invariance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信