具有宽参数范围、偏移增强行为和高初始灵敏度的简明 4D 保守混沌系统

IF 1.9 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Baoqing Lu, Juan Du, Jiulong Du, Zeyang Zhao
{"title":"具有宽参数范围、偏移增强行为和高初始灵敏度的简明 4D 保守混沌系统","authors":"Baoqing Lu, Juan Du, Jiulong Du, Zeyang Zhao","doi":"10.1142/s0218127424500809","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a concise four-dimensional (4D) conservative chaotic system with a wide parameter range. Since there are no terms higher than first order, the circuit does not contain multipliers, resulting in a simple circuit implementation. The nonlinear dynamic characteristics, such as phase diagrams, equilibrium points, divergence, Poincaré cross-sections, Lyapunov exponents, bifurcation diagrams, and Lyapunov dimension, are analyzed in detail, which illustrates the conservativity. Besides, the system exhibits different offset boosting behaviors. Through offset boosting, the system can propagate along a line, convert signal polarity, control variable amplitude, generate coexisting attractors, and even induce changes in its state. Specially, we realize the transition from a single-vortex attractor to a multivortex one by some changes in the initial values. Furthermore, the Pearson correlation coefficient is used to demonstrate the higher initial value sensitivity of the system. Finally, the system is implemented through Multisim simulation and analog circuit separately, and their consistency validates the system effectively.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"43 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Concise 4D Conservative Chaotic System with Wide Parameter Range, Offset Boosting Behavior and High Initial Sensitivity\",\"authors\":\"Baoqing Lu, Juan Du, Jiulong Du, Zeyang Zhao\",\"doi\":\"10.1142/s0218127424500809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a concise four-dimensional (4D) conservative chaotic system with a wide parameter range. Since there are no terms higher than first order, the circuit does not contain multipliers, resulting in a simple circuit implementation. The nonlinear dynamic characteristics, such as phase diagrams, equilibrium points, divergence, Poincaré cross-sections, Lyapunov exponents, bifurcation diagrams, and Lyapunov dimension, are analyzed in detail, which illustrates the conservativity. Besides, the system exhibits different offset boosting behaviors. Through offset boosting, the system can propagate along a line, convert signal polarity, control variable amplitude, generate coexisting attractors, and even induce changes in its state. Specially, we realize the transition from a single-vortex attractor to a multivortex one by some changes in the initial values. Furthermore, the Pearson correlation coefficient is used to demonstrate the higher initial value sensitivity of the system. Finally, the system is implemented through Multisim simulation and analog circuit separately, and their consistency validates the system effectively.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500809\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500809","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个参数范围很宽的简明四维(4D)保守混沌系统。由于没有高于一阶的项,电路不包含乘法器,因此电路实现简单。详细分析了非线性动态特性,如相图、平衡点、发散、Poincaré 截面、Lyapunov 指数、分岔图和 Lyapunov 维度,从而说明了系统的保守性。此外,系统还表现出不同的偏移助推行为。通过偏移助推,系统可以沿线传播、转换信号极性、控制变幅、产生共存吸引子,甚至诱导其状态变化。特别是,我们通过改变初始值实现了从单涡旋吸引子到多涡旋吸引子的转变。此外,我们还利用皮尔逊相关系数来证明该系统具有较高的初值敏感性。最后,通过 Multisim 仿真和模拟电路分别实现了该系统,它们的一致性有效地验证了该系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Concise 4D Conservative Chaotic System with Wide Parameter Range, Offset Boosting Behavior and High Initial Sensitivity

In this paper, we present a concise four-dimensional (4D) conservative chaotic system with a wide parameter range. Since there are no terms higher than first order, the circuit does not contain multipliers, resulting in a simple circuit implementation. The nonlinear dynamic characteristics, such as phase diagrams, equilibrium points, divergence, Poincaré cross-sections, Lyapunov exponents, bifurcation diagrams, and Lyapunov dimension, are analyzed in detail, which illustrates the conservativity. Besides, the system exhibits different offset boosting behaviors. Through offset boosting, the system can propagate along a line, convert signal polarity, control variable amplitude, generate coexisting attractors, and even induce changes in its state. Specially, we realize the transition from a single-vortex attractor to a multivortex one by some changes in the initial values. Furthermore, the Pearson correlation coefficient is used to demonstrate the higher initial value sensitivity of the system. Finally, the system is implemented through Multisim simulation and analog circuit separately, and their consistency validates the system effectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Bifurcation and Chaos
International Journal of Bifurcation and Chaos 数学-数学跨学科应用
CiteScore
4.10
自引率
13.60%
发文量
237
审稿时长
2-4 weeks
期刊介绍: The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering. The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信