{"title":"边界强源有界域中的标量守恒定律","authors":"Lu Xu","doi":"10.1007/s00030-024-00959-y","DOIUrl":null,"url":null,"abstract":"<p>We consider a scalar conservation law with source in a bounded open interval <span>\\(\\Omega \\subseteq \\mathbb R\\)</span>. The equation arises from the macroscopic evolution of an interacting particle system. The source term models an external effort driving the solution to a given function <span>\\(\\varrho \\)</span> with an intensity function <span>\\(V:\\Omega \\rightarrow \\mathbb R_+\\)</span> that grows to infinity at <span>\\(\\partial \\Omega \\)</span>. We define the entropy solution <span>\\(u \\in L^\\infty \\)</span> and prove the uniqueness. When <i>V</i> is integrable, <i>u</i> satisfies the boundary conditions introduced by F. Otto (C. R. Acad. Sci. Paris, 322(1):729–734, 1996), which allows the solution to attain values at <span>\\(\\partial \\Omega \\)</span> different from the given boundary data. When the integral of <i>V</i> blows up, <i>u</i> satisfies an energy estimate and presents essential continuity at <span>\\(\\partial \\Omega \\)</span> in a weak sense.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalar conservation law in a bounded domain with strong source at boundary\",\"authors\":\"Lu Xu\",\"doi\":\"10.1007/s00030-024-00959-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a scalar conservation law with source in a bounded open interval <span>\\\\(\\\\Omega \\\\subseteq \\\\mathbb R\\\\)</span>. The equation arises from the macroscopic evolution of an interacting particle system. The source term models an external effort driving the solution to a given function <span>\\\\(\\\\varrho \\\\)</span> with an intensity function <span>\\\\(V:\\\\Omega \\\\rightarrow \\\\mathbb R_+\\\\)</span> that grows to infinity at <span>\\\\(\\\\partial \\\\Omega \\\\)</span>. We define the entropy solution <span>\\\\(u \\\\in L^\\\\infty \\\\)</span> and prove the uniqueness. When <i>V</i> is integrable, <i>u</i> satisfies the boundary conditions introduced by F. Otto (C. R. Acad. Sci. Paris, 322(1):729–734, 1996), which allows the solution to attain values at <span>\\\\(\\\\partial \\\\Omega \\\\)</span> different from the given boundary data. When the integral of <i>V</i> blows up, <i>u</i> satisfies an energy estimate and presents essential continuity at <span>\\\\(\\\\partial \\\\Omega \\\\)</span> in a weak sense.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00959-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00959-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑一个标量守恒定律,其源点位于一个有界的开放区间(\Omega \subseteq \mathbb R\ )。该方程源于相互作用粒子系统的宏观演化。源项模拟的是一种外部作用,它将解驱动为一个给定的函数(\varrho \),其强度函数(V:\Omega \rightarrow \mathbb R_+\)在\(\partial \Omega \)处增长到无穷大。我们定义了熵解 \(u \in L^\infty \) 并证明了其唯一性。当 V 可积分时,u 满足 F. Otto 引入的边界条件(C. R. Acad.Sci. Paris, 322(1):729-734, 1996),它允许解在不同于给定边界数据的 \(partial \Omega \)处取值。当 V 的积分爆炸时,u 满足能量估计,并在\(\partial \Omega \)处呈现弱意义上的基本连续性。
Scalar conservation law in a bounded domain with strong source at boundary
We consider a scalar conservation law with source in a bounded open interval \(\Omega \subseteq \mathbb R\). The equation arises from the macroscopic evolution of an interacting particle system. The source term models an external effort driving the solution to a given function \(\varrho \) with an intensity function \(V:\Omega \rightarrow \mathbb R_+\) that grows to infinity at \(\partial \Omega \). We define the entropy solution \(u \in L^\infty \) and prove the uniqueness. When V is integrable, u satisfies the boundary conditions introduced by F. Otto (C. R. Acad. Sci. Paris, 322(1):729–734, 1996), which allows the solution to attain values at \(\partial \Omega \) different from the given boundary data. When the integral of V blows up, u satisfies an energy estimate and presents essential continuity at \(\partial \Omega \) in a weak sense.