{"title":"RED-PSM:通过对用于动态成像的因子化低秩模型去噪进行正规化","authors":"Berk Iskender;Marc L. Klasky;Yoram Bresler","doi":"10.1109/TCI.2024.3402347","DOIUrl":null,"url":null,"abstract":"Dynamic imaging addresses the recovery of a time-varying 2D or 3D object at each time instant using its undersampled measurements. In particular, in the case of dynamic tomography, only a single projection at a single view angle may be available at a time, making the problem severely ill-posed. We propose an approach, RED-PSM, which combines for the first time two powerful techniques to address this challenging imaging problem. The first, are non-parametric factorized low rank models, also known as partially separable models (PSMs), which have been used to efficiently introduce a low-rank prior for the spatio-temporal object. The second is the recent \n<italic>Regularization by Denoising (RED)</i>\n, which provides a flexible framework to exploit the impressive performance of state-of-the-art image denoising algorithms, for various inverse problems. We propose a partially separable objective with RED and a computationally efficient and scalable optimization scheme with variable splitting and ADMM. Theoretical analysis proves the convergence of our objective to a value corresponding to a stationary point satisfying the first-order optimality conditions. Convergence is accelerated by a particular projection-domain-based initialization. We demonstrate the performance and computational improvements of our proposed RED-PSM with a learned image denoiser by comparing it to a recent deep-prior-based method known as TD-DIP. Although the main focus is on dynamic tomography, we also show performance advantages of RED-PSM in a cardiac dynamic MRI setting.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"832-847"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10535218","citationCount":"0","resultStr":"{\"title\":\"RED-PSM: Regularization by Denoising of Factorized Low Rank Models for Dynamic Imaging\",\"authors\":\"Berk Iskender;Marc L. Klasky;Yoram Bresler\",\"doi\":\"10.1109/TCI.2024.3402347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic imaging addresses the recovery of a time-varying 2D or 3D object at each time instant using its undersampled measurements. In particular, in the case of dynamic tomography, only a single projection at a single view angle may be available at a time, making the problem severely ill-posed. We propose an approach, RED-PSM, which combines for the first time two powerful techniques to address this challenging imaging problem. The first, are non-parametric factorized low rank models, also known as partially separable models (PSMs), which have been used to efficiently introduce a low-rank prior for the spatio-temporal object. The second is the recent \\n<italic>Regularization by Denoising (RED)</i>\\n, which provides a flexible framework to exploit the impressive performance of state-of-the-art image denoising algorithms, for various inverse problems. We propose a partially separable objective with RED and a computationally efficient and scalable optimization scheme with variable splitting and ADMM. Theoretical analysis proves the convergence of our objective to a value corresponding to a stationary point satisfying the first-order optimality conditions. Convergence is accelerated by a particular projection-domain-based initialization. We demonstrate the performance and computational improvements of our proposed RED-PSM with a learned image denoiser by comparing it to a recent deep-prior-based method known as TD-DIP. Although the main focus is on dynamic tomography, we also show performance advantages of RED-PSM in a cardiac dynamic MRI setting.\",\"PeriodicalId\":56022,\"journal\":{\"name\":\"IEEE Transactions on Computational Imaging\",\"volume\":\"10 \",\"pages\":\"832-847\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10535218\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10535218/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10535218/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
RED-PSM: Regularization by Denoising of Factorized Low Rank Models for Dynamic Imaging
Dynamic imaging addresses the recovery of a time-varying 2D or 3D object at each time instant using its undersampled measurements. In particular, in the case of dynamic tomography, only a single projection at a single view angle may be available at a time, making the problem severely ill-posed. We propose an approach, RED-PSM, which combines for the first time two powerful techniques to address this challenging imaging problem. The first, are non-parametric factorized low rank models, also known as partially separable models (PSMs), which have been used to efficiently introduce a low-rank prior for the spatio-temporal object. The second is the recent
Regularization by Denoising (RED)
, which provides a flexible framework to exploit the impressive performance of state-of-the-art image denoising algorithms, for various inverse problems. We propose a partially separable objective with RED and a computationally efficient and scalable optimization scheme with variable splitting and ADMM. Theoretical analysis proves the convergence of our objective to a value corresponding to a stationary point satisfying the first-order optimality conditions. Convergence is accelerated by a particular projection-domain-based initialization. We demonstrate the performance and computational improvements of our proposed RED-PSM with a learned image denoiser by comparing it to a recent deep-prior-based method known as TD-DIP. Although the main focus is on dynamic tomography, we also show performance advantages of RED-PSM in a cardiac dynamic MRI setting.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.