{"title":"物理扩展六维洛伦兹系统的定性特性","authors":"Fuchen Zhang, Ping Zhou, Fei Xu","doi":"10.1142/s0218127424500834","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the qualitative properties of a physically extended six-dimensional Lorenz system, with additional physical terms describing rotation and density, which was proposed in [Moon <i>et al</i>., 2019] have been investigated. The dissipation, invariance, Lyapunov exponents, Kaplan–Yorke dimension, ultimate boundedness and global attractivity of this six-dimensional Lorenz system have been discussed in detail according to the chaotic systems theory. We find that this system exhibits chaos phenomena for a new set of parameters. It is well known that the general method for studying the bounds of a chaotic system is to construct a suitable Lyapunov-like function (or the generalized positive definite and radically unbounded Lyapunov function). However, the higher the dimension of a chaotic system, the more difficult it is to construct the Lyapunov-like function. The innovation of this paper is that we first construct the suitable Lyapunov-like function for this six-dimensional Lorenz system, and then we prove that this system is not only globally bounded for varying parameters, but it also gives a collection of global absorbing sets for this system with respect to all parameters of this system according to Lyapunov’s direct method and the optimization method. Furthermore, we obtain the rate of the trajectories going from the exterior to the global absorbing set. Some numerical simulations are presented to validate our research results. Finally, we give a direct application of the results obtained in this paper. According to the results of this paper, we can conclude that the equilibrium point <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy=\"false\">)</mo></math></span><span></span> of this system is globally exponentially stable.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative Properties of a Physically Extended Six-Dimensional Lorenz System\",\"authors\":\"Fuchen Zhang, Ping Zhou, Fei Xu\",\"doi\":\"10.1142/s0218127424500834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the qualitative properties of a physically extended six-dimensional Lorenz system, with additional physical terms describing rotation and density, which was proposed in [Moon <i>et al</i>., 2019] have been investigated. The dissipation, invariance, Lyapunov exponents, Kaplan–Yorke dimension, ultimate boundedness and global attractivity of this six-dimensional Lorenz system have been discussed in detail according to the chaotic systems theory. We find that this system exhibits chaos phenomena for a new set of parameters. It is well known that the general method for studying the bounds of a chaotic system is to construct a suitable Lyapunov-like function (or the generalized positive definite and radically unbounded Lyapunov function). However, the higher the dimension of a chaotic system, the more difficult it is to construct the Lyapunov-like function. The innovation of this paper is that we first construct the suitable Lyapunov-like function for this six-dimensional Lorenz system, and then we prove that this system is not only globally bounded for varying parameters, but it also gives a collection of global absorbing sets for this system with respect to all parameters of this system according to Lyapunov’s direct method and the optimization method. Furthermore, we obtain the rate of the trajectories going from the exterior to the global absorbing set. Some numerical simulations are presented to validate our research results. Finally, we give a direct application of the results obtained in this paper. According to the results of this paper, we can conclude that the equilibrium point <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of this system is globally exponentially stable.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500834\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500834","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了[Moon et al., 2019]中提出的物理扩展六维洛伦兹系统的定性性质,该系统带有描述旋转和密度的附加物理项。根据混沌系统理论,详细讨论了这个六维洛伦兹系统的耗散、不变性、Lyapunov 指数、Kaplan-Yorke 维度、终极有界性和全局吸引力。我们发现该系统在一组新参数下表现出混沌现象。众所周知,研究混沌系统边界的一般方法是构造一个合适的类李亚普诺夫函数(或广义正定且根本无边界的李亚普诺夫函数)。然而,混沌系统的维度越高,构建类李亚普诺夫函数就越困难。本文的创新之处在于,我们首先为这个六维洛伦兹系统构造了合适的类李雅普诺夫函数,然后根据李雅普诺夫直接法和最优化法证明了这个系统不仅在参数变化时是全局有界的,而且给出了这个系统关于所有参数的全局吸收集的集合。此外,我们还得到了从外部到全局吸收集的轨迹速率。通过一些数值模拟来验证我们的研究成果。最后,我们给出了本文所获结果的直接应用。根据本文的结果,我们可以得出结论:该系统的平衡点 O(0,0,0,0,0,0,0)是全局指数稳定的。
Qualitative Properties of a Physically Extended Six-Dimensional Lorenz System
In this paper, the qualitative properties of a physically extended six-dimensional Lorenz system, with additional physical terms describing rotation and density, which was proposed in [Moon et al., 2019] have been investigated. The dissipation, invariance, Lyapunov exponents, Kaplan–Yorke dimension, ultimate boundedness and global attractivity of this six-dimensional Lorenz system have been discussed in detail according to the chaotic systems theory. We find that this system exhibits chaos phenomena for a new set of parameters. It is well known that the general method for studying the bounds of a chaotic system is to construct a suitable Lyapunov-like function (or the generalized positive definite and radically unbounded Lyapunov function). However, the higher the dimension of a chaotic system, the more difficult it is to construct the Lyapunov-like function. The innovation of this paper is that we first construct the suitable Lyapunov-like function for this six-dimensional Lorenz system, and then we prove that this system is not only globally bounded for varying parameters, but it also gives a collection of global absorbing sets for this system with respect to all parameters of this system according to Lyapunov’s direct method and the optimization method. Furthermore, we obtain the rate of the trajectories going from the exterior to the global absorbing set. Some numerical simulations are presented to validate our research results. Finally, we give a direct application of the results obtained in this paper. According to the results of this paper, we can conclude that the equilibrium point of this system is globally exponentially stable.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.