{"title":"圆域上一类偏函数微分方程中的等变霍普夫分岔","authors":"Yaqi Chen, Xianyi Zeng, Ben Niu","doi":"10.1142/s0218127424500792","DOIUrl":null,"url":null,"abstract":"<p>Circular domains frequently appear in mathematical modeling in the fields of ecology, biology and chemistry. In this paper, we investigate the equivariant Hopf bifurcation of partial functional differential equations with Neumann boundary condition on a two-dimensional disk. The properties of these bifurcations at equilibriums are analyzed rigorously by studying the equivariant normal forms. Two reaction–diffusion systems with discrete time delays are selected as numerical examples to verify the theoretical results, in which spatially inhomogeneous periodic solutions including standing waves and rotating waves, and spatially homogeneous periodic solutions are found near the bifurcation points.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant Hopf Bifurcation in a Class of Partial Functional Differential Equations on a Circular Domain\",\"authors\":\"Yaqi Chen, Xianyi Zeng, Ben Niu\",\"doi\":\"10.1142/s0218127424500792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Circular domains frequently appear in mathematical modeling in the fields of ecology, biology and chemistry. In this paper, we investigate the equivariant Hopf bifurcation of partial functional differential equations with Neumann boundary condition on a two-dimensional disk. The properties of these bifurcations at equilibriums are analyzed rigorously by studying the equivariant normal forms. Two reaction–diffusion systems with discrete time delays are selected as numerical examples to verify the theoretical results, in which spatially inhomogeneous periodic solutions including standing waves and rotating waves, and spatially homogeneous periodic solutions are found near the bifurcation points.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500792\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500792","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Equivariant Hopf Bifurcation in a Class of Partial Functional Differential Equations on a Circular Domain
Circular domains frequently appear in mathematical modeling in the fields of ecology, biology and chemistry. In this paper, we investigate the equivariant Hopf bifurcation of partial functional differential equations with Neumann boundary condition on a two-dimensional disk. The properties of these bifurcations at equilibriums are analyzed rigorously by studying the equivariant normal forms. Two reaction–diffusion systems with discrete time delays are selected as numerical examples to verify the theoretical results, in which spatially inhomogeneous periodic solutions including standing waves and rotating waves, and spatially homogeneous periodic solutions are found near the bifurcation points.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.