{"title":"准周期强迫分片线性图中的非光滑杈状分叉","authors":"Àngel Jorba, Joan Carles Tatjer, Yuan Zhang","doi":"10.1142/s0218127424500846","DOIUrl":null,"url":null,"abstract":"<p>We study a family of one-dimensional quasi-periodically forced maps <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">+</mo><mi>ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi></math></span><span></span> is real, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜃</mi></math></span><span></span> is an angle, and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span> is an irrational frequency, such that <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is a real piecewise-linear map with respect to <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi></math></span><span></span> of certain kind. The family depends on two real parameters, <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>></mo><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>></mo><mn>0</mn></math></span><span></span>. For this family, we prove the existence of nonsmooth pitchfork bifurcations. For <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo><</mo><mn>1</mn></math></span><span></span> and any <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>,</mo></math></span><span></span> there is only one continuous invariant curve. For <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>></mo><mn>1</mn><mo>,</mo></math></span><span></span> there exists a smooth map <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> such that: (a) For <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo><</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span><span></span> has two continuous attracting invariant curves and one continuous repelling curve; (b) For <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span> it has one continuous repelling invariant curve and two semi-continuous (noncontinuous) attracting invariant curves that intersect the unstable one in a zero-Lebesgue measure set of angles; (c) For <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>b</mi><mo>></mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span> it has one continuous attracting invariant curve. The case <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>=</mo><mn>1</mn></math></span><span></span> is a degenerate case that is also discussed in the paper. It is interesting to note that this family is a simplified version of the smooth family <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>G</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo stretchy=\"false\">(</mo><mo>arctan</mo><mo stretchy=\"false\">(</mo><mi>a</mi><mi>x</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">+</mo><mi>b</mi><mo>sin</mo><mo stretchy=\"false\">(</mo><mi>𝜃</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>𝜃</mi><mo stretchy=\"false\">+</mo><mi>ω</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for which there is numerical evidence of a nonsmooth pitchfork bifurcation. Finally, we also discuss the limit case when <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>→</mo><mi>∞</mi></math></span><span></span>.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonsmooth Pitchfork Bifurcations in a Quasi-Periodically Forced Piecewise-Linear Map\",\"authors\":\"Àngel Jorba, Joan Carles Tatjer, Yuan Zhang\",\"doi\":\"10.1142/s0218127424500846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a family of one-dimensional quasi-periodically forced maps <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>F</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>𝜃</mi><mo stretchy=\\\"false\\\">+</mo><mi>ω</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, where <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi></math></span><span></span> is real, <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜃</mi></math></span><span></span> is an angle, and <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ω</mi></math></span><span></span> is an irrational frequency, such that <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is a real piecewise-linear map with respect to <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi></math></span><span></span> of certain kind. The family depends on two real parameters, <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>a</mi><mo>></mo><mn>0</mn></math></span><span></span> and <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>b</mi><mo>></mo><mn>0</mn></math></span><span></span>. For this family, we prove the existence of nonsmooth pitchfork bifurcations. For <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>a</mi><mo><</mo><mn>1</mn></math></span><span></span> and any <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>b</mi><mo>,</mo></math></span><span></span> there is only one continuous invariant curve. For <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>a</mi><mo>></mo><mn>1</mn><mo>,</mo></math></span><span></span> there exists a smooth map <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>b</mi><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> such that: (a) For <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>b</mi><mo><</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub></math></span><span></span> has two continuous attracting invariant curves and one continuous repelling curve; (b) For <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>b</mi><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo></math></span><span></span> it has one continuous repelling invariant curve and two semi-continuous (noncontinuous) attracting invariant curves that intersect the unstable one in a zero-Lebesgue measure set of angles; (c) For <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>b</mi><mo>></mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo></math></span><span></span> it has one continuous attracting invariant curve. The case <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>a</mi><mo>=</mo><mn>1</mn></math></span><span></span> is a degenerate case that is also discussed in the paper. It is interesting to note that this family is a simplified version of the smooth family <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>G</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>𝜃</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mo stretchy=\\\"false\\\">(</mo><mo>arctan</mo><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">+</mo><mi>b</mi><mo>sin</mo><mo stretchy=\\\"false\\\">(</mo><mi>𝜃</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>𝜃</mi><mo stretchy=\\\"false\\\">+</mo><mi>ω</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> for which there is numerical evidence of a nonsmooth pitchfork bifurcation. Finally, we also discuss the limit case when <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>a</mi><mo>→</mo><mi>∞</mi></math></span><span></span>.</p>\",\"PeriodicalId\":50337,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500846\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500846","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Nonsmooth Pitchfork Bifurcations in a Quasi-Periodically Forced Piecewise-Linear Map
We study a family of one-dimensional quasi-periodically forced maps , where is real, is an angle, and is an irrational frequency, such that is a real piecewise-linear map with respect to of certain kind. The family depends on two real parameters, and . For this family, we prove the existence of nonsmooth pitchfork bifurcations. For and any there is only one continuous invariant curve. For there exists a smooth map such that: (a) For , has two continuous attracting invariant curves and one continuous repelling curve; (b) For it has one continuous repelling invariant curve and two semi-continuous (noncontinuous) attracting invariant curves that intersect the unstable one in a zero-Lebesgue measure set of angles; (c) For it has one continuous attracting invariant curve. The case is a degenerate case that is also discussed in the paper. It is interesting to note that this family is a simplified version of the smooth family for which there is numerical evidence of a nonsmooth pitchfork bifurcation. Finally, we also discuss the limit case when .
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.