几何无限可分自回归模型

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY
Monika S. Dhull, Arun Kumar
{"title":"几何无限可分自回归模型","authors":"Monika S. Dhull, Arun Kumar","doi":"10.1007/s00362-024-01564-y","DOIUrl":null,"url":null,"abstract":"<p>In this article, we discuss some geometric infinitely divisible (gid) random variables using the Laplace exponents which are Bernstein functions and study their properties. The distributional properties and limiting behavior of the probability densities of these gid random variables at <span>\\(0^{+}\\)</span> are studied. The autoregressive (AR) models with gid marginals are introduced. Further, the first order AR process is generalized to <i>k</i>th order AR process. We also provide the parameter estimation method based on conditional least square and method of moments for the introduced AR(1) process. We also apply the introduced AR(1) model with geometric inverse Gaussian marginals on the household energy usage data which provide a good fit as compared to normal AR(1) data.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"5 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric infinitely divisible autoregressive models\",\"authors\":\"Monika S. Dhull, Arun Kumar\",\"doi\":\"10.1007/s00362-024-01564-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we discuss some geometric infinitely divisible (gid) random variables using the Laplace exponents which are Bernstein functions and study their properties. The distributional properties and limiting behavior of the probability densities of these gid random variables at <span>\\\\(0^{+}\\\\)</span> are studied. The autoregressive (AR) models with gid marginals are introduced. Further, the first order AR process is generalized to <i>k</i>th order AR process. We also provide the parameter estimation method based on conditional least square and method of moments for the introduced AR(1) process. We also apply the introduced AR(1) model with geometric inverse Gaussian marginals on the household energy usage data which provide a good fit as compared to normal AR(1) data.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-024-01564-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01564-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文利用伯恩斯坦函数的拉普拉斯指数讨论了一些几何无限可分(gid)随机变量,并研究了它们的性质。研究了这些gid随机变量在\(0^{+}\)处的概率密度的分布性质和极限行为。引入了具有 gid 边值的自回归(AR)模型。此外,还将一阶 AR 过程泛化为 kth 阶 AR 过程。我们还为引入的 AR(1) 过程提供了基于条件最小二乘法和矩法的参数估计方法。我们还将引入的具有几何反高斯边际的 AR(1) 模型应用于家庭能源使用数据,与普通 AR(1) 数据相比,该模型具有良好的拟合效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geometric infinitely divisible autoregressive models

Geometric infinitely divisible autoregressive models

In this article, we discuss some geometric infinitely divisible (gid) random variables using the Laplace exponents which are Bernstein functions and study their properties. The distributional properties and limiting behavior of the probability densities of these gid random variables at \(0^{+}\) are studied. The autoregressive (AR) models with gid marginals are introduced. Further, the first order AR process is generalized to kth order AR process. We also provide the parameter estimation method based on conditional least square and method of moments for the introduced AR(1) process. We also apply the introduced AR(1) model with geometric inverse Gaussian marginals on the household energy usage data which provide a good fit as compared to normal AR(1) data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Papers
Statistical Papers 数学-统计学与概率论
CiteScore
2.80
自引率
7.70%
发文量
95
审稿时长
6-12 weeks
期刊介绍: The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信