在 CUDA 上使用并行计算函数式编程库

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
M. M. Krasnov, O. B. Feodoritova
{"title":"在 CUDA 上使用并行计算函数式编程库","authors":"M. M. Krasnov, O. B. Feodoritova","doi":"10.1134/s0361768824010055","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Modern graphics accelerators (GPUs) can significantly speed up the execution of numerical problems. However, porting programs to graphics accelerators is not an easy task, sometimes requiring their almost complete rewriting. CUDA graphics accelerators, thanks to technology developed by NVIDIA, allow one to have a single source code for both conventional processors (CPUs) and CUDA. However, parallelization on shared memory is still done differently and should be specified explicitly. The use of a functional programming library developed by the authors makes it possible to hide the use of one or another parallelization mechanism on shared memory within the library and make the user’s source code completely independent of the computing device used (CPU or CUDA). This article shows how this can be done.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Functional Programming Library for Parallel Computing on CUDA\",\"authors\":\"M. M. Krasnov, O. B. Feodoritova\",\"doi\":\"10.1134/s0361768824010055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Modern graphics accelerators (GPUs) can significantly speed up the execution of numerical problems. However, porting programs to graphics accelerators is not an easy task, sometimes requiring their almost complete rewriting. CUDA graphics accelerators, thanks to technology developed by NVIDIA, allow one to have a single source code for both conventional processors (CPUs) and CUDA. However, parallelization on shared memory is still done differently and should be specified explicitly. The use of a functional programming library developed by the authors makes it possible to hide the use of one or another parallelization mechanism on shared memory within the library and make the user’s source code completely independent of the computing device used (CPU or CUDA). This article shows how this can be done.</p>\",\"PeriodicalId\":54555,\"journal\":{\"name\":\"Programming and Computer Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programming and Computer Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1134/s0361768824010055\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0361768824010055","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

摘要现代图形加速器(GPU)可以大大加快数值问题的执行速度。然而,将程序移植到图形加速器上并非易事,有时几乎需要完全重写。得益于英伟达™(NVIDIA®)公司开发的 CUDA 图形加速器技术,人们可以用一个源代码同时处理传统处理器(CPU)和 CUDA。不过,共享内存上的并行化仍然采用不同的方式,并应明确指定。通过使用作者开发的函数式编程库,可以将共享内存上的一种或另一种并行化机制隐藏在库中,使用户的源代码完全独立于所使用的计算设备(CPU 或 CUDA)。本文展示了如何做到这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Use of Functional Programming Library for Parallel Computing on CUDA

Abstract

Modern graphics accelerators (GPUs) can significantly speed up the execution of numerical problems. However, porting programs to graphics accelerators is not an easy task, sometimes requiring their almost complete rewriting. CUDA graphics accelerators, thanks to technology developed by NVIDIA, allow one to have a single source code for both conventional processors (CPUs) and CUDA. However, parallelization on shared memory is still done differently and should be specified explicitly. The use of a functional programming library developed by the authors makes it possible to hide the use of one or another parallelization mechanism on shared memory within the library and make the user’s source code completely independent of the computing device used (CPU or CUDA). This article shows how this can be done.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Programming and Computer Software
Programming and Computer Software 工程技术-计算机:软件工程
CiteScore
1.60
自引率
28.60%
发文量
35
审稿时长
>12 weeks
期刊介绍: Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信