{"title":"解决里森数据分析问题:使用 Wolfram Mathematica 中的计算机代数方法进行理论和数值建模","authors":"T. V. Yakovleva","doi":"10.1134/s0361768824020154","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This paper considers theoretical foundations and mathematical methods of data analysis under the conditions of the Rice statistical distribution. The problem involves joint estimation of the signal and noise parameters. It is shown that this estimation requires the solution of a complex system of essentially nonlinear equations with two unknown variables, which implies significant computational costs. This study is aimed at mathematical optimization of computer algebra methods for numerical solution of the problem of Rician data analysis. As a result of the optimization, the solution of the system of two nonlinear equations is reduced to the solution of one equation with one unknown variable, which significantly simplifies algorithms for the numerical solution of the problem, reduces the amount of necessary computational resources, and enables the use of advanced methods for parameter estimation in information systems with priority of real-time operation. Results of numerical experiments carried out using Wolfram Mathematica confirm the effectiveness of the developed methods for two-parameter analysis of Rician data. The data analysis methods considered in this paper are useful for solving many scientific and applied problems that involve analysis of data described by the Rice statistical model.</p>","PeriodicalId":54555,"journal":{"name":"Programming and Computer Software","volume":"20 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Rician Data Analysis Problems: Theory and Numerical Modeling Using Computer Algebra Methods in Wolfram Mathematica\",\"authors\":\"T. V. Yakovleva\",\"doi\":\"10.1134/s0361768824020154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>This paper considers theoretical foundations and mathematical methods of data analysis under the conditions of the Rice statistical distribution. The problem involves joint estimation of the signal and noise parameters. It is shown that this estimation requires the solution of a complex system of essentially nonlinear equations with two unknown variables, which implies significant computational costs. This study is aimed at mathematical optimization of computer algebra methods for numerical solution of the problem of Rician data analysis. As a result of the optimization, the solution of the system of two nonlinear equations is reduced to the solution of one equation with one unknown variable, which significantly simplifies algorithms for the numerical solution of the problem, reduces the amount of necessary computational resources, and enables the use of advanced methods for parameter estimation in information systems with priority of real-time operation. Results of numerical experiments carried out using Wolfram Mathematica confirm the effectiveness of the developed methods for two-parameter analysis of Rician data. The data analysis methods considered in this paper are useful for solving many scientific and applied problems that involve analysis of data described by the Rice statistical model.</p>\",\"PeriodicalId\":54555,\"journal\":{\"name\":\"Programming and Computer Software\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programming and Computer Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1134/s0361768824020154\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programming and Computer Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1134/s0361768824020154","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Solving Rician Data Analysis Problems: Theory and Numerical Modeling Using Computer Algebra Methods in Wolfram Mathematica
Abstract
This paper considers theoretical foundations and mathematical methods of data analysis under the conditions of the Rice statistical distribution. The problem involves joint estimation of the signal and noise parameters. It is shown that this estimation requires the solution of a complex system of essentially nonlinear equations with two unknown variables, which implies significant computational costs. This study is aimed at mathematical optimization of computer algebra methods for numerical solution of the problem of Rician data analysis. As a result of the optimization, the solution of the system of two nonlinear equations is reduced to the solution of one equation with one unknown variable, which significantly simplifies algorithms for the numerical solution of the problem, reduces the amount of necessary computational resources, and enables the use of advanced methods for parameter estimation in information systems with priority of real-time operation. Results of numerical experiments carried out using Wolfram Mathematica confirm the effectiveness of the developed methods for two-parameter analysis of Rician data. The data analysis methods considered in this paper are useful for solving many scientific and applied problems that involve analysis of data described by the Rice statistical model.
期刊介绍:
Programming and Computer Software is a peer reviewed journal devoted to problems in all areas of computer science: operating systems, compiler technology, software engineering, artificial intelligence, etc.