在所有环境维度中$\psi$坏近似点集合的维度:关于别列斯涅维奇和维拉尼的一个问题

IF 0.9 2区 数学 Q2 MATHEMATICS
Henna Koivusalo, Jason Levesley, Benjamin Ward, Xintian Zhang
{"title":"在所有环境维度中$\\psi$坏近似点集合的维度:关于别列斯涅维奇和维拉尼的一个问题","authors":"Henna Koivusalo, Jason Levesley, Benjamin Ward, Xintian Zhang","doi":"10.1093/imrn/rnae101","DOIUrl":null,"url":null,"abstract":"Let $\\psi :{\\mathbb{N}} \\to [0,\\infty )$, $\\psi (q)=q^{-(1+\\tau )}$ and let $\\psi $-badly approximable points be those vectors in ${\\mathbb{R}}^{d}$ that are $\\psi $-well approximable, but not $c\\psi $-well approximable for arbitrarily small constants $c>0$. We establish that the $\\psi $-badly approximable points have the Hausdorff dimension of the $\\psi $-well approximable points, the dimension taking the value $(d+1)/(\\tau +1)$ familiar from theorems of Besicovitch and Jarník. The method of proof is an entirely new take on the Mass Transference Principle (MTP) by Beresnevich and Velani (Annals, 2006); namely, we use the colloquially named “delayed pruning” to construct a sufficiently large $\\liminf $ set and combine this with ideas inspired by the proof of the MTP to find a large $\\limsup $ subset of the $\\liminf $ set. Our results are a generalisation of some $1$-dimensional results due to Bugeaud and Moreira (Acta Arith, 2011), but our method of proof is nothing alike.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"48 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dimension of the Set of $\\\\psi $-Badly Approximable Points in All Ambient Dimensions: On a Question of Beresnevich and Velani\",\"authors\":\"Henna Koivusalo, Jason Levesley, Benjamin Ward, Xintian Zhang\",\"doi\":\"10.1093/imrn/rnae101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\psi :{\\\\mathbb{N}} \\\\to [0,\\\\infty )$, $\\\\psi (q)=q^{-(1+\\\\tau )}$ and let $\\\\psi $-badly approximable points be those vectors in ${\\\\mathbb{R}}^{d}$ that are $\\\\psi $-well approximable, but not $c\\\\psi $-well approximable for arbitrarily small constants $c>0$. We establish that the $\\\\psi $-badly approximable points have the Hausdorff dimension of the $\\\\psi $-well approximable points, the dimension taking the value $(d+1)/(\\\\tau +1)$ familiar from theorems of Besicovitch and Jarník. The method of proof is an entirely new take on the Mass Transference Principle (MTP) by Beresnevich and Velani (Annals, 2006); namely, we use the colloquially named “delayed pruning” to construct a sufficiently large $\\\\liminf $ set and combine this with ideas inspired by the proof of the MTP to find a large $\\\\limsup $ subset of the $\\\\liminf $ set. Our results are a generalisation of some $1$-dimensional results due to Bugeaud and Moreira (Acta Arith, 2011), but our method of proof is nothing alike.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae101\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae101","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $\psi :{\mathbb{N}} 去 [0,\infty )$。\到 [0,\infty )$,$\psi (q)=q^{-(1+\tau )}$,并让 $\psi $坏近似点是${mathbb{R}}^{d}$中那些对于任意小的常数$c>0$来说$\psi $好近似,但不是$c\psi $好近似的向量。我们确定,$\psi$-badly approximable点具有$\psi$-well approximable点的豪斯多夫维度,维度取值为贝西科维奇(Besicovitch)和雅尼克(Jarník)定理中熟悉的$(d+1)/(\tau +1)$。我们的证明方法是对贝尔斯涅维奇和维拉尼的质量转移原理(MTP)(《年鉴》,2006年)的全新演绎;即,我们使用俗称的 "延迟剪枝 "来构造一个足够大的(\liminf)集合,并将其与受MTP证明启发的思想相结合,从而找到(\liminf)集合的一个大的(\limsup)子集。我们的结果是对布格奥德和莫雷拉(Acta Arith, 2011)提出的一些1$维结果的概括,但我们的证明方法却完全不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Dimension of the Set of $\psi $-Badly Approximable Points in All Ambient Dimensions: On a Question of Beresnevich and Velani
Let $\psi :{\mathbb{N}} \to [0,\infty )$, $\psi (q)=q^{-(1+\tau )}$ and let $\psi $-badly approximable points be those vectors in ${\mathbb{R}}^{d}$ that are $\psi $-well approximable, but not $c\psi $-well approximable for arbitrarily small constants $c>0$. We establish that the $\psi $-badly approximable points have the Hausdorff dimension of the $\psi $-well approximable points, the dimension taking the value $(d+1)/(\tau +1)$ familiar from theorems of Besicovitch and Jarník. The method of proof is an entirely new take on the Mass Transference Principle (MTP) by Beresnevich and Velani (Annals, 2006); namely, we use the colloquially named “delayed pruning” to construct a sufficiently large $\liminf $ set and combine this with ideas inspired by the proof of the MTP to find a large $\limsup $ subset of the $\liminf $ set. Our results are a generalisation of some $1$-dimensional results due to Bugeaud and Moreira (Acta Arith, 2011), but our method of proof is nothing alike.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信