Theodore D Drivas, Daniil Glukhovskiy, Boris Khesin
{"title":"奇异涡旋对遵循磁性大地线","authors":"Theodore D Drivas, Daniil Glukhovskiy, Boris Khesin","doi":"10.1093/imrn/rnae106","DOIUrl":null,"url":null,"abstract":"We consider pairs of point vortices having circulations $\\Gamma _{1}$ and $\\Gamma _{2}$ and confined to a two-dimensional surface $S$. In the limit of zero initial separation $\\varepsilon $, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $1/\\varepsilon ^{2}$ in an magnetic field $B$ that is everywhere normal to the surface and of strength $|B|=\\Gamma _{1} +\\Gamma _{2}$. In the case $\\Gamma _{1}=-\\Gamma _{2}$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular Vortex Pairs Follow Magnetic Geodesics\",\"authors\":\"Theodore D Drivas, Daniil Glukhovskiy, Boris Khesin\",\"doi\":\"10.1093/imrn/rnae106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider pairs of point vortices having circulations $\\\\Gamma _{1}$ and $\\\\Gamma _{2}$ and confined to a two-dimensional surface $S$. In the limit of zero initial separation $\\\\varepsilon $, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $1/\\\\varepsilon ^{2}$ in an magnetic field $B$ that is everywhere normal to the surface and of strength $|B|=\\\\Gamma _{1} +\\\\Gamma _{2}$. In the case $\\\\Gamma _{1}=-\\\\Gamma _{2}$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider pairs of point vortices having circulations $\Gamma _{1}$ and $\Gamma _{2}$ and confined to a two-dimensional surface $S$. In the limit of zero initial separation $\varepsilon $, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $1/\varepsilon ^{2}$ in an magnetic field $B$ that is everywhere normal to the surface and of strength $|B|=\Gamma _{1} +\Gamma _{2}$. In the case $\Gamma _{1}=-\Gamma _{2}$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics.