奇异涡旋对遵循磁性大地线

Pub Date : 2024-05-23 DOI:10.1093/imrn/rnae106
Theodore D Drivas, Daniil Glukhovskiy, Boris Khesin
{"title":"奇异涡旋对遵循磁性大地线","authors":"Theodore D Drivas, Daniil Glukhovskiy, Boris Khesin","doi":"10.1093/imrn/rnae106","DOIUrl":null,"url":null,"abstract":"We consider pairs of point vortices having circulations $\\Gamma _{1}$ and $\\Gamma _{2}$ and confined to a two-dimensional surface $S$. In the limit of zero initial separation $\\varepsilon $, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $1/\\varepsilon ^{2}$ in an magnetic field $B$ that is everywhere normal to the surface and of strength $|B|=\\Gamma _{1} +\\Gamma _{2}$. In the case $\\Gamma _{1}=-\\Gamma _{2}$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular Vortex Pairs Follow Magnetic Geodesics\",\"authors\":\"Theodore D Drivas, Daniil Glukhovskiy, Boris Khesin\",\"doi\":\"10.1093/imrn/rnae106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider pairs of point vortices having circulations $\\\\Gamma _{1}$ and $\\\\Gamma _{2}$ and confined to a two-dimensional surface $S$. In the limit of zero initial separation $\\\\varepsilon $, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $1/\\\\varepsilon ^{2}$ in an magnetic field $B$ that is everywhere normal to the surface and of strength $|B|=\\\\Gamma _{1} +\\\\Gamma _{2}$. In the case $\\\\Gamma _{1}=-\\\\Gamma _{2}$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一对具有$\Gamma _{1}$和$\Gamma _{2}$循环并被限制在二维表面$S$上的点涡旋。在初始分离度 $\varepsilon $ 为零的极限下,我们证明,如果适当地重新规范化,它们会一致地沿着磁性大地线运动。具体地说,"奇异涡旋对 "作为表面上的单电荷粒子运动,其电荷量级为 $1/\varepsilon ^{2}$,在磁场$B$中运动,该磁场的强度为$|B|=\Gamma _{1}+\Gamma _{2}$。在 $\Gamma _{1}=-\Gamma _{2}$ 的情况下,这给出了木村猜想[11]的另一个证明,即奇异偶极子遵循大地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Singular Vortex Pairs Follow Magnetic Geodesics
We consider pairs of point vortices having circulations $\Gamma _{1}$ and $\Gamma _{2}$ and confined to a two-dimensional surface $S$. In the limit of zero initial separation $\varepsilon $, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $1/\varepsilon ^{2}$ in an magnetic field $B$ that is everywhere normal to the surface and of strength $|B|=\Gamma _{1} +\Gamma _{2}$. In the case $\Gamma _{1}=-\Gamma _{2}$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信