奇异涡旋对遵循磁性大地线

IF 0.9 2区 数学 Q2 MATHEMATICS
Theodore D Drivas, Daniil Glukhovskiy, Boris Khesin
{"title":"奇异涡旋对遵循磁性大地线","authors":"Theodore D Drivas, Daniil Glukhovskiy, Boris Khesin","doi":"10.1093/imrn/rnae106","DOIUrl":null,"url":null,"abstract":"We consider pairs of point vortices having circulations $\\Gamma _{1}$ and $\\Gamma _{2}$ and confined to a two-dimensional surface $S$. In the limit of zero initial separation $\\varepsilon $, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $1/\\varepsilon ^{2}$ in an magnetic field $B$ that is everywhere normal to the surface and of strength $|B|=\\Gamma _{1} +\\Gamma _{2}$. In the case $\\Gamma _{1}=-\\Gamma _{2}$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"21 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular Vortex Pairs Follow Magnetic Geodesics\",\"authors\":\"Theodore D Drivas, Daniil Glukhovskiy, Boris Khesin\",\"doi\":\"10.1093/imrn/rnae106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider pairs of point vortices having circulations $\\\\Gamma _{1}$ and $\\\\Gamma _{2}$ and confined to a two-dimensional surface $S$. In the limit of zero initial separation $\\\\varepsilon $, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $1/\\\\varepsilon ^{2}$ in an magnetic field $B$ that is everywhere normal to the surface and of strength $|B|=\\\\Gamma _{1} +\\\\Gamma _{2}$. In the case $\\\\Gamma _{1}=-\\\\Gamma _{2}$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics.\",\"PeriodicalId\":14461,\"journal\":{\"name\":\"International Mathematics Research Notices\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematics Research Notices\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae106\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae106","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一对具有$\Gamma _{1}$和$\Gamma _{2}$循环并被限制在二维表面$S$上的点涡旋。在初始分离度 $\varepsilon $ 为零的极限下,我们证明,如果适当地重新规范化,它们会一致地沿着磁性大地线运动。具体地说,"奇异涡旋对 "作为表面上的单电荷粒子运动,其电荷量级为 $1/\varepsilon ^{2}$,在磁场$B$中运动,该磁场的强度为$|B|=\Gamma _{1}+\Gamma _{2}$。在 $\Gamma _{1}=-\Gamma _{2}$ 的情况下,这给出了木村猜想[11]的另一个证明,即奇异偶极子遵循大地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular Vortex Pairs Follow Magnetic Geodesics
We consider pairs of point vortices having circulations $\Gamma _{1}$ and $\Gamma _{2}$ and confined to a two-dimensional surface $S$. In the limit of zero initial separation $\varepsilon $, we prove that they follow a magnetic geodesic in unison, if properly renormalized. Specifically, the “singular vortex pair” moves as a single-charged particle on the surface with a charge of order $1/\varepsilon ^{2}$ in an magnetic field $B$ that is everywhere normal to the surface and of strength $|B|=\Gamma _{1} +\Gamma _{2}$. In the case $\Gamma _{1}=-\Gamma _{2}$, this gives another proof of Kimura’s conjecture [11] that singular dipoles follow geodesics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信