L 2-梯度李群上的最大函数

Pub Date : 2024-05-22 DOI:10.1093/imrn/rnae105
Duván Cardona
{"title":"L 2-梯度李群上的最大函数","authors":"Duván Cardona","doi":"10.1093/imrn/rnae105","DOIUrl":null,"url":null,"abstract":"Bourgain in his seminal paper of 1986 about the analysis of maximal functions associated to convex bodies has estimated in a sharp way the $L^{2}$-operator norm of the maximal function associated to a kernel $K\\in L^{1},$ with differentiable Fourier transform $\\widehat{K}.$ We formulate the extension to Bourgain’s $L^{2}$-estimate in the setting of maximal functions on graded Lie groups. Our criterion is formulated in terms of the group Fourier transform of the kernel. We discuss the application of our main result to the $L^{p}$-boundedness of maximal functions on graded Lie groups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L 2-Maximal Functions on Graded Lie Groups\",\"authors\":\"Duván Cardona\",\"doi\":\"10.1093/imrn/rnae105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bourgain in his seminal paper of 1986 about the analysis of maximal functions associated to convex bodies has estimated in a sharp way the $L^{2}$-operator norm of the maximal function associated to a kernel $K\\\\in L^{1},$ with differentiable Fourier transform $\\\\widehat{K}.$ We formulate the extension to Bourgain’s $L^{2}$-estimate in the setting of maximal functions on graded Lie groups. Our criterion is formulated in terms of the group Fourier transform of the kernel. We discuss the application of our main result to the $L^{p}$-boundedness of maximal functions on graded Lie groups.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

布尔甘(Bourgain)在其 1986 年关于分析与凸体相关的最大函数的开创性论文中,以敏锐的方式估计了与 L^{1} 中具有可变傅里叶变换 $\widehat{K} 的核 $K\ 相关的最大函数的 $L^{2}$ 运算符规范。我们的判据是用内核的群傅里叶变换来表述的。我们将讨论我们的主要结果在梯度李群上最大函数的 $L^{p}$ 约束性中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
L 2-Maximal Functions on Graded Lie Groups
Bourgain in his seminal paper of 1986 about the analysis of maximal functions associated to convex bodies has estimated in a sharp way the $L^{2}$-operator norm of the maximal function associated to a kernel $K\in L^{1},$ with differentiable Fourier transform $\widehat{K}.$ We formulate the extension to Bourgain’s $L^{2}$-estimate in the setting of maximal functions on graded Lie groups. Our criterion is formulated in terms of the group Fourier transform of the kernel. We discuss the application of our main result to the $L^{p}$-boundedness of maximal functions on graded Lie groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信