窗口和内绘:处理天琴的数据缺口

Lu Wang, Hong-Yu Chen, Xiangyu Lyu, En-Kun Li, Yi-Ming Hu
{"title":"窗口和内绘:处理天琴的数据缺口","authors":"Lu Wang, Hong-Yu Chen, Xiangyu Lyu, En-Kun Li, Yi-Ming Hu","doi":"arxiv-2405.14274","DOIUrl":null,"url":null,"abstract":"Space-borne gravitational wave detectors like TianQin might encounter data\ngaps due to factors like micro-meteoroid collisions or hardware failures. Such\nglitches will cause discontinuity in the data and have been observed in the\nLISA Pathfinder. The existence of such data gaps presents challenges to the\ndata analysis for TianQin, especially for massive black hole binary mergers,\nsince its signal-to-noise ratio (SNR) accumulates in a non-linear way, a gap\nnear the merger could lead to significant loss of SNR. It could introduce bias\nin the estimate of noise properties, and furthermore the results of the\nparameter estimation. In this work, using simulated TianQin data with injected\na massive black hole binary merger, we study the window function method, and\nfor the first time, the inpainting method to cope with the data gap, and an\niterative estimate scheme is designed to properly estimate the noise spectrum.\nWe find that both methods can properly estimate noise and signal parameters.\nThe easy-to-implement window function method can already perform well, except\nthat it will sacrifice some SNR due to the adoption of the window. The\ninpainting method is slower, but it can minimize the impact of the data gap.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Window and inpainting: dealing with data gaps for TianQin\",\"authors\":\"Lu Wang, Hong-Yu Chen, Xiangyu Lyu, En-Kun Li, Yi-Ming Hu\",\"doi\":\"arxiv-2405.14274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space-borne gravitational wave detectors like TianQin might encounter data\\ngaps due to factors like micro-meteoroid collisions or hardware failures. Such\\nglitches will cause discontinuity in the data and have been observed in the\\nLISA Pathfinder. The existence of such data gaps presents challenges to the\\ndata analysis for TianQin, especially for massive black hole binary mergers,\\nsince its signal-to-noise ratio (SNR) accumulates in a non-linear way, a gap\\nnear the merger could lead to significant loss of SNR. It could introduce bias\\nin the estimate of noise properties, and furthermore the results of the\\nparameter estimation. In this work, using simulated TianQin data with injected\\na massive black hole binary merger, we study the window function method, and\\nfor the first time, the inpainting method to cope with the data gap, and an\\niterative estimate scheme is designed to properly estimate the noise spectrum.\\nWe find that both methods can properly estimate noise and signal parameters.\\nThe easy-to-implement window function method can already perform well, except\\nthat it will sacrifice some SNR due to the adoption of the window. The\\ninpainting method is slower, but it can minimize the impact of the data gap.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.14274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于微流星体碰撞或硬件故障等因素,像天琴这样的天载引力波探测器可能会遇到数据缺口。这种数据缺口会导致数据的不连续性,LISA 探路者号上就观测到了这种情况。这种数据间隙的存在给天琴的数据分析带来了挑战,尤其是对大质量黑洞双星合并的数据分析,因为其信噪比(SNR)是以非线性方式累积的,合并附近的间隙可能导致信噪比的显著损失。这可能会给噪声特性的估计带来偏差,并进一步影响参数估计的结果。在这项工作中,我们利用注入大质量黑洞双星合并的模拟天琴数据,研究了窗函数方法,并首次研究了内绘方法来应对数据间隙,同时设计了一种迭代估计方案来正确估计噪声谱。绘制方法虽然速度较慢,但可以最大限度地减少数据间隙的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Window and inpainting: dealing with data gaps for TianQin
Space-borne gravitational wave detectors like TianQin might encounter data gaps due to factors like micro-meteoroid collisions or hardware failures. Such glitches will cause discontinuity in the data and have been observed in the LISA Pathfinder. The existence of such data gaps presents challenges to the data analysis for TianQin, especially for massive black hole binary mergers, since its signal-to-noise ratio (SNR) accumulates in a non-linear way, a gap near the merger could lead to significant loss of SNR. It could introduce bias in the estimate of noise properties, and furthermore the results of the parameter estimation. In this work, using simulated TianQin data with injected a massive black hole binary merger, we study the window function method, and for the first time, the inpainting method to cope with the data gap, and an iterative estimate scheme is designed to properly estimate the noise spectrum. We find that both methods can properly estimate noise and signal parameters. The easy-to-implement window function method can already perform well, except that it will sacrifice some SNR due to the adoption of the window. The inpainting method is slower, but it can minimize the impact of the data gap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信