{"title":"为相干μ介子-电子转变实验开发基于闪烁光纤的光束监测器","authors":"Yu Xu, Yun-Song Ning, Zhi-Zhen Qin, Yao Teng, Chang-Qing Feng, Jian Tang, Yu Chen, Yoshinori Fukao, Satoshi Mihara, Kou Oishi","doi":"10.1007/s41365-024-01442-0","DOIUrl":null,"url":null,"abstract":"<p>The coherent muon-to-electron transition (COMET) experiment is a leading experiment for the coherent conversion of <span>\\(\\mu ^- \\textrm{N}\\rightarrow e^- \\textrm{N}\\)</span> using a high-intensity pulsed muon beamline, produced using innovative slow-extraction techniques. Therefore, it is critical to measure the muon beam characteristics. We set up a muon beam monitor (MBM), where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET. The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run. The development of the MBM, including its mechanical structure, electronic readout, and beam measurement results, are discussed</p>","PeriodicalId":19177,"journal":{"name":"Nuclear Science and Techniques","volume":"43 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a scintillating-fiber-based beam monitor for the coherent muon-to-electron transition experiment\",\"authors\":\"Yu Xu, Yun-Song Ning, Zhi-Zhen Qin, Yao Teng, Chang-Qing Feng, Jian Tang, Yu Chen, Yoshinori Fukao, Satoshi Mihara, Kou Oishi\",\"doi\":\"10.1007/s41365-024-01442-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coherent muon-to-electron transition (COMET) experiment is a leading experiment for the coherent conversion of <span>\\\\(\\\\mu ^- \\\\textrm{N}\\\\rightarrow e^- \\\\textrm{N}\\\\)</span> using a high-intensity pulsed muon beamline, produced using innovative slow-extraction techniques. Therefore, it is critical to measure the muon beam characteristics. We set up a muon beam monitor (MBM), where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET. The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run. The development of the MBM, including its mechanical structure, electronic readout, and beam measurement results, are discussed</p>\",\"PeriodicalId\":19177,\"journal\":{\"name\":\"Nuclear Science and Techniques\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Science and Techniques\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s41365-024-01442-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Techniques","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s41365-024-01442-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Development of a scintillating-fiber-based beam monitor for the coherent muon-to-electron transition experiment
The coherent muon-to-electron transition (COMET) experiment is a leading experiment for the coherent conversion of \(\mu ^- \textrm{N}\rightarrow e^- \textrm{N}\) using a high-intensity pulsed muon beamline, produced using innovative slow-extraction techniques. Therefore, it is critical to measure the muon beam characteristics. We set up a muon beam monitor (MBM), where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET. The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run. The development of the MBM, including its mechanical structure, electronic readout, and beam measurement results, are discussed
期刊介绍:
Nuclear Science and Techniques (NST) reports scientific findings, technical advances and important results in the fields of nuclear science and techniques. The aim of this periodical is to stimulate cross-fertilization of knowledge among scientists and engineers working in the fields of nuclear research.
Scope covers the following subjects:
• Synchrotron radiation applications, beamline technology;
• Accelerator, ray technology and applications;
• Nuclear chemistry, radiochemistry, radiopharmaceuticals, nuclear medicine;
• Nuclear electronics and instrumentation;
• Nuclear physics and interdisciplinary research;
• Nuclear energy science and engineering.