有限域上典型多面体分解的固定参数可操作性

Jason Yang
{"title":"有限域上典型多面体分解的固定参数可操作性","authors":"Jason Yang","doi":"arxiv-2405.11699","DOIUrl":null,"url":null,"abstract":"We present a simple proof that finding a rank-$R$ canonical polyadic\ndecomposition of 3-dimensional tensors over a finite field $\\mathbb{F}$ is\nfixed-parameter tractable with respect to $R$ and $\\mathbb{F}$. We also show\nsome more concrete upper bounds on the time complexity of this problem.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed-parameter tractability of canonical polyadic decomposition over finite fields\",\"authors\":\"Jason Yang\",\"doi\":\"arxiv-2405.11699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple proof that finding a rank-$R$ canonical polyadic\\ndecomposition of 3-dimensional tensors over a finite field $\\\\mathbb{F}$ is\\nfixed-parameter tractable with respect to $R$ and $\\\\mathbb{F}$. We also show\\nsome more concrete upper bounds on the time complexity of this problem.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.11699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.11699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个简单的证明,即在有限域 $\mathbb{F}$ 上寻找 3 维张量的秩-$R$ 正则多面体分解,对于 $R$ 和 $\mathbb{F}$ 来说是固定参数可控的。我们还展示了这个问题的时间复杂度的一些更具体的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-parameter tractability of canonical polyadic decomposition over finite fields
We present a simple proof that finding a rank-$R$ canonical polyadic decomposition of 3-dimensional tensors over a finite field $\mathbb{F}$ is fixed-parameter tractable with respect to $R$ and $\mathbb{F}$. We also show some more concrete upper bounds on the time complexity of this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信