你解不开的超级马里奥兄弟关卡不可解的马里奥游戏

MIT Hardness Group, Hayashi Ani, Erik D. Demaine, Holden Hall, Ricardo Ruiz, Naveen Venkat
{"title":"你解不开的超级马里奥兄弟关卡不可解的马里奥游戏","authors":"MIT Hardness Group, Hayashi Ani, Erik D. Demaine, Holden Hall, Ricardo Ruiz, Naveen Venkat","doi":"arxiv-2405.10546","DOIUrl":null,"url":null,"abstract":"We prove RE-completeness (and thus undecidability) of several 2D games in the\nSuper Mario Bros. platform video game series: the New Super Mario Bros. series\n(original, Wii, U, and 2), and both Super Mario Maker games in all five game\nstyles (Super Mario Bros. 1 and 3, Super Mario World, New Super Mario Bros. U,\nand Super Mario 3D World). These results hold even when we restrict to\nconstant-size levels and screens, but they do require generalizing to allow\narbitrarily many enemies at each location and onscreen, as well as allowing for\nexponentially large (or no) timer. Our New Super Mario Bros. constructions fit\nwithin one standard screen size. In our Super Mario Maker reductions, we work\nwithin the standard screen size and use the property that the game engine\nremembers offscreen objects that are global because they are supported by\n\"global ground\". To prove these Mario results, we build a new theory of counter\ngadgets in the motion-planning-through-gadgets framework, and provide a suite\nof simple gadgets for which reachability is RE-complete.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"You Can't Solve These Super Mario Bros. Levels: Undecidable Mario Games\",\"authors\":\"MIT Hardness Group, Hayashi Ani, Erik D. Demaine, Holden Hall, Ricardo Ruiz, Naveen Venkat\",\"doi\":\"arxiv-2405.10546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove RE-completeness (and thus undecidability) of several 2D games in the\\nSuper Mario Bros. platform video game series: the New Super Mario Bros. series\\n(original, Wii, U, and 2), and both Super Mario Maker games in all five game\\nstyles (Super Mario Bros. 1 and 3, Super Mario World, New Super Mario Bros. U,\\nand Super Mario 3D World). These results hold even when we restrict to\\nconstant-size levels and screens, but they do require generalizing to allow\\narbitrarily many enemies at each location and onscreen, as well as allowing for\\nexponentially large (or no) timer. Our New Super Mario Bros. constructions fit\\nwithin one standard screen size. In our Super Mario Maker reductions, we work\\nwithin the standard screen size and use the property that the game engine\\nremembers offscreen objects that are global because they are supported by\\n\\\"global ground\\\". To prove these Mario results, we build a new theory of counter\\ngadgets in the motion-planning-through-gadgets framework, and provide a suite\\nof simple gadgets for which reachability is RE-complete.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.10546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了《超级马里奥兄弟》(Super Mario Bros.)平台视频游戏系列中几款二维游戏的RE完备性(从而证明了其不可判定性):《新超级马里奥兄弟》(New Super Mario Bros.)系列(原始版、Wii版、U版和2版),以及所有五种游戏风格(《超级马里奥兄弟1》和《超级马里奥兄弟3》、《超级马里奥世界》、《新超级马里奥兄弟U》和《超级马里奥3D世界》)中的两款《超级马里奥制造者》游戏。即使我们限制关卡和屏幕的大小,这些结果也是成立的,但它们确实需要进行归纳,以便在每个位置和屏幕上允许任意多的敌人,以及允许前指数大(或无)的计时器。我们的《新超级马里奥兄弟》构建符合一个标准屏幕尺寸。在我们的《超级马里奥制造》重制版中,我们在标准屏幕尺寸内工作,并使用了游戏引擎会记住屏幕外物体的属性,这些物体是全局的,因为它们得到了 "全局地面 "的支持。为了证明这些马里奥结果,我们在 "通过小工具进行运动规划 "的框架中建立了一个新的反小工具理论,并提供了一套简单的小工具,这些小工具的可达性是 RE-完备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
You Can't Solve These Super Mario Bros. Levels: Undecidable Mario Games
We prove RE-completeness (and thus undecidability) of several 2D games in the Super Mario Bros. platform video game series: the New Super Mario Bros. series (original, Wii, U, and 2), and both Super Mario Maker games in all five game styles (Super Mario Bros. 1 and 3, Super Mario World, New Super Mario Bros. U, and Super Mario 3D World). These results hold even when we restrict to constant-size levels and screens, but they do require generalizing to allow arbitrarily many enemies at each location and onscreen, as well as allowing for exponentially large (or no) timer. Our New Super Mario Bros. constructions fit within one standard screen size. In our Super Mario Maker reductions, we work within the standard screen size and use the property that the game engine remembers offscreen objects that are global because they are supported by "global ground". To prove these Mario results, we build a new theory of counter gadgets in the motion-planning-through-gadgets framework, and provide a suite of simple gadgets for which reachability is RE-complete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信