莫里塔等价性与非空格布拉上部分霍普夫作用的全局化

IF 0.5 3区 数学 Q3 MATHEMATICS
Marcelo Muniz Alves, Tiago Luiz Ferrazza
{"title":"莫里塔等价性与非空格布拉上部分霍普夫作用的全局化","authors":"Marcelo Muniz Alves, Tiago Luiz Ferrazza","doi":"10.1142/s0219498825502627","DOIUrl":null,"url":null,"abstract":"<p>In this work, we investigate partial actions of a Hopf algebra <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span> on nonunital algebras and the associated partial smash products, with the objective of providing a framework where one may obtain results for both <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo>𝕜</mo></math></span><span></span>-algebras with local units and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo>𝕜</mo></math></span><span></span>-categories. We show that our partial actions correspond to nonunital algebras in the category of partial representations of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi></math></span><span></span>. The central problem of existence of a globalization for a partial action is studied in detail, and we provide sufficient conditions for the existence (and uniqueness) of a minimal globalization for associative algebras in general. Extending previous results by Abadie, Dokuchaev, Exel and Simon, we define Morita equivalence for partial Hopf actions, and we show that if two symmetrical partial actions are Morita equivalent then their standard globalizations are also Morita equivalent. Particularizing to the case of a partial action on an algebra with local units, we obtain several strong results on equivalences of categories of modules of partial smash products of algebras and partial smash products of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mo>𝕜</mo></math></span><span></span>-categories.</p>","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morita equivalence and globalization for partial Hopf actions on nonunital algebras\",\"authors\":\"Marcelo Muniz Alves, Tiago Luiz Ferrazza\",\"doi\":\"10.1142/s0219498825502627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we investigate partial actions of a Hopf algebra <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi></math></span><span></span> on nonunital algebras and the associated partial smash products, with the objective of providing a framework where one may obtain results for both <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>𝕜</mo></math></span><span></span>-algebras with local units and <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>𝕜</mo></math></span><span></span>-categories. We show that our partial actions correspond to nonunital algebras in the category of partial representations of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi></math></span><span></span>. The central problem of existence of a globalization for a partial action is studied in detail, and we provide sufficient conditions for the existence (and uniqueness) of a minimal globalization for associative algebras in general. Extending previous results by Abadie, Dokuchaev, Exel and Simon, we define Morita equivalence for partial Hopf actions, and we show that if two symmetrical partial actions are Morita equivalent then their standard globalizations are also Morita equivalent. Particularizing to the case of a partial action on an algebra with local units, we obtain several strong results on equivalences of categories of modules of partial smash products of algebras and partial smash products of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>𝕜</mo></math></span><span></span>-categories.</p>\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825502627\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825502627","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们研究了霍普夫代数 H 在非空格代数上的部分作用以及相关的部分粉碎乘积,目的是提供一个框架,在这个框架中,我们既可以得到有局部单元的𝕜代数的结果,也可以得到𝕜范畴的结果。我们详细研究了部分作用的全局化存在性这一核心问题,并为一般关联代数的最小全局化的存在性(和唯一性)提供了充分条件。我们扩展了阿巴迪、多库恰耶夫、埃塞尔和西蒙以前的成果,定义了部分霍普夫作用的莫里塔等价性,并证明如果两个对称的部分作用是莫里塔等价的,那么它们的标准全局化也是莫里塔等价的。特别是在具有局部单元的代数上的部分作用的情况下,我们得到了关于代数的部分粉碎乘积的模块类别和𝕜类别的部分粉碎乘积的等价性的几个强有力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morita equivalence and globalization for partial Hopf actions on nonunital algebras

In this work, we investigate partial actions of a Hopf algebra H on nonunital algebras and the associated partial smash products, with the objective of providing a framework where one may obtain results for both 𝕜-algebras with local units and 𝕜-categories. We show that our partial actions correspond to nonunital algebras in the category of partial representations of H. The central problem of existence of a globalization for a partial action is studied in detail, and we provide sufficient conditions for the existence (and uniqueness) of a minimal globalization for associative algebras in general. Extending previous results by Abadie, Dokuchaev, Exel and Simon, we define Morita equivalence for partial Hopf actions, and we show that if two symmetrical partial actions are Morita equivalent then their standard globalizations are also Morita equivalent. Particularizing to the case of a partial action on an algebra with local units, we obtain several strong results on equivalences of categories of modules of partial smash products of algebras and partial smash products of 𝕜-categories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
226
审稿时长
4-8 weeks
期刊介绍: The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信