关于渐近理想级的上界

IF 0.5 3区 数学 Q3 MATHEMATICS
Saeed Jahandoust
{"title":"关于渐近理想级的上界","authors":"Saeed Jahandoust","doi":"10.1142/s021949882550272x","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>I</mi></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>J</mi></math></span><span></span> be ideals in a Noetherian ring <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi></math></span><span></span> and let <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> be nonunits in <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi></math></span><span></span>. Then <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> is said to be an asymptotic sequence over <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>I</mi></math></span><span></span> if <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>I</mi><mo>,</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mi>R</mi><mo>≠</mo><mi>R</mi></math></span><span></span> and if for all <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span> is not in any associated prime of the integral closure <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mover accent=\"false\"><mrow><msup><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>i</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo></mrow><mrow><mi>m</mi></mrow></msup></mrow><mo accent=\"true\">¯</mo></mover></math></span><span></span> of <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>i</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo></mrow><mrow><mi>m</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>I</mi><mo>,</mo><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>R</mi></math></span><span></span>, where <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span> is very large. Let <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo>agd</mo></mrow><mrow><mi>I</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>J</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be the maximum number of elements in <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>J</mi></math></span><span></span> which form an asymptotic sequence over <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>I</mi></math></span><span></span>. It is characterized when <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo>agd</mo></mrow><mrow><mi>I</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>J</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is equal to: (i) <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℓ</mi><mo stretchy=\"false\">(</mo><mi>J</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, the analytic spread of <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><mi>J</mi></math></span><span></span>, when <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi></math></span><span></span> is local; (ii) <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mo>ht</mo><mo stretchy=\"false\">(</mo><mi>I</mi><mo stretchy=\"false\">+</mo><mi>J</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><mo>agd</mo><mo stretchy=\"false\">(</mo><mi>I</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mo>agd</mo><mo stretchy=\"false\">(</mo><mi>I</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the maximum number of elements in <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>I</mi></math></span><span></span> which form an asymptotic sequence over <span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo><mi>R</mi></math></span><span></span>, and several consequences of these characterizations are given. Finally, if <span><math altimg=\"eq-00027.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi></math></span><span></span> is local with maximal ideal <span><math altimg=\"eq-00028.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝔪</mi></math></span><span></span> then we reprove a known upper bound for <span><math altimg=\"eq-00029.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo>agd</mo></mrow><mrow><mi>I</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>𝔪</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On upper bounds for asymptotic ideal-grade\",\"authors\":\"Saeed Jahandoust\",\"doi\":\"10.1142/s021949882550272x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>I</mi></math></span><span></span> and <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>J</mi></math></span><span></span> be ideals in a Noetherian ring <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>R</mi></math></span><span></span> and let <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> be nonunits in <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>R</mi></math></span><span></span>. Then <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> is said to be an asymptotic sequence over <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>I</mi></math></span><span></span> if <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>I</mi><mo>,</mo><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mi>R</mi><mo>≠</mo><mi>R</mi></math></span><span></span> and if for all <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></math></span><span></span>, <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><span></span> is not in any associated prime of the integral closure <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mover accent=\\\"false\\\"><mrow><msup><mrow><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>i</mi><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>m</mi></mrow></msup></mrow><mo accent=\\\"true\\\">¯</mo></mover></math></span><span></span> of <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>i</mi><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>m</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mi>I</mi><mo>,</mo><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>R</mi></math></span><span></span>, where <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>m</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span> is very large. Let <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo>agd</mo></mrow><mrow><mi>I</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>J</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> be the maximum number of elements in <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>J</mi></math></span><span></span> which form an asymptotic sequence over <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>I</mi></math></span><span></span>. It is characterized when <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo>agd</mo></mrow><mrow><mi>I</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>J</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is equal to: (i) <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℓ</mi><mo stretchy=\\\"false\\\">(</mo><mi>J</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, the analytic spread of <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>J</mi></math></span><span></span>, when <span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>R</mi></math></span><span></span> is local; (ii) <span><math altimg=\\\"eq-00023.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>ht</mo><mo stretchy=\\\"false\\\">(</mo><mi>I</mi><mo stretchy=\\\"false\\\">+</mo><mi>J</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">−</mo><mo>agd</mo><mo stretchy=\\\"false\\\">(</mo><mi>I</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, where <span><math altimg=\\\"eq-00024.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>agd</mo><mo stretchy=\\\"false\\\">(</mo><mi>I</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is the maximum number of elements in <span><math altimg=\\\"eq-00025.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>I</mi></math></span><span></span> which form an asymptotic sequence over <span><math altimg=\\\"eq-00026.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo stretchy=\\\"false\\\">)</mo><mi>R</mi></math></span><span></span>, and several consequences of these characterizations are given. Finally, if <span><math altimg=\\\"eq-00027.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>R</mi></math></span><span></span> is local with maximal ideal <span><math altimg=\\\"eq-00028.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝔪</mi></math></span><span></span> then we reprove a known upper bound for <span><math altimg=\\\"eq-00029.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo>agd</mo></mrow><mrow><mi>I</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>𝔪</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021949882550272x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021949882550272x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 I 和 J 是诺特环 R 中的理想,设 x1,...,xn 是 R 中的非单元。如果 (I,(x1,...,xn))R≠R 并且对于所有 1≤i≤n, xi 不在 (Ii-1)m=(I,(x1,...,xi-1))mR 的积分闭包 (Ii-1)m¯ 的任何相关素数中,其中 m∈ℕ 非常大,那么 x1,...,xn 可以说是 I 上的渐近序列。设 agdI(J) 是 J 中构成 I 上渐近序列的元素的最大数目:(i) ℓ(J),J 的解析展宽,当 R 是局部时;(ii) ht(I+J)-agd(I),其中 agd(I) 是 I 中构成 (0)R 上渐近序列的元素的最大数目,并给出了这些特征的若干后果。最后,如果 R 是局部最大理想ᵒ,那么我们将重新证明 agdI(𝔪) 的已知上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On upper bounds for asymptotic ideal-grade

Let I and J be ideals in a Noetherian ring R and let x1,,xn be nonunits in R. Then x1,,xn is said to be an asymptotic sequence over I if (I,(x1,,xn))RR and if for all 1in, xi is not in any associated prime of the integral closure (Ii1)m¯ of (Ii1)m=(I,(x1,,xi1))mR, where m is very large. Let agdI(J) be the maximum number of elements in J which form an asymptotic sequence over I. It is characterized when agdI(J) is equal to: (i) (J), the analytic spread of J, when R is local; (ii) ht(I+J)agd(I), where agd(I) is the maximum number of elements in I which form an asymptotic sequence over (0)R, and several consequences of these characterizations are given. Finally, if R is local with maximal ideal 𝔪 then we reprove a known upper bound for agdI(𝔪).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
226
审稿时长
4-8 weeks
期刊介绍: The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信