{"title":"希尔伯特-塞缪尔函数的恒定性","authors":"VINCENT COSSART, OLIVIER PILTANT, BERND SCHOBER","doi":"10.1017/nmj.2024.13","DOIUrl":null,"url":null,"abstract":"We prove a criterion for the constancy of the Hilbert–Samuel function for locally Noetherian schemes such that the local rings are excellent at every point. More precisely, we show that the Hilbert–Samuel function is locally constant on such a scheme if and only if the scheme is normally flat along its reduction and the reduction itself is regular. Regularity of the underlying reduced scheme is a significant new property.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"26 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONSTANCY OF THE HILBERT–SAMUEL FUNCTION\",\"authors\":\"VINCENT COSSART, OLIVIER PILTANT, BERND SCHOBER\",\"doi\":\"10.1017/nmj.2024.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a criterion for the constancy of the Hilbert–Samuel function for locally Noetherian schemes such that the local rings are excellent at every point. More precisely, we show that the Hilbert–Samuel function is locally constant on such a scheme if and only if the scheme is normally flat along its reduction and the reduction itself is regular. Regularity of the underlying reduced scheme is a significant new property.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2024.13\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2024.13","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We prove a criterion for the constancy of the Hilbert–Samuel function for locally Noetherian schemes such that the local rings are excellent at every point. More precisely, we show that the Hilbert–Samuel function is locally constant on such a scheme if and only if the scheme is normally flat along its reduction and the reduction itself is regular. Regularity of the underlying reduced scheme is a significant new property.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.