针对洛瓦兹-施里弗 SDP 算子的具有高升降级的稳定集合多面体

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yu Hin Au, Levent Tunçel
{"title":"针对洛瓦兹-施里弗 SDP 算子的具有高升降级的稳定集合多面体","authors":"Yu Hin Au, Levent Tunçel","doi":"10.1007/s10107-024-02093-0","DOIUrl":null,"url":null,"abstract":"<p>We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász–Schrijver SDP operator <span>\\({{\\,\\textrm{LS}\\,}}_+\\)</span>. In particular, we focus on a search for relatively small graphs with high <span>\\({{\\,\\textrm{LS}\\,}}_+\\)</span>-rank (i.e., the least number of iterations of the <span>\\({{\\,\\textrm{LS}\\,}}_+\\)</span> operator on the fractional stable set polytope to compute the stable set polytope). We provide families of graphs whose <span>\\({{\\,\\textrm{LS}\\,}}_+\\)</span>-rank is asymptotically a linear function of its number of vertices, which is the best possible up to improvements in the constant factor. This improves upon the previous best result in this direction from 1999, which yielded graphs whose <span>\\({{\\,\\textrm{LS}\\,}}_+\\)</span>-rank only grew with the square root of the number of vertices.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator\",\"authors\":\"Yu Hin Au, Levent Tunçel\",\"doi\":\"10.1007/s10107-024-02093-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász–Schrijver SDP operator <span>\\\\({{\\\\,\\\\textrm{LS}\\\\,}}_+\\\\)</span>. In particular, we focus on a search for relatively small graphs with high <span>\\\\({{\\\\,\\\\textrm{LS}\\\\,}}_+\\\\)</span>-rank (i.e., the least number of iterations of the <span>\\\\({{\\\\,\\\\textrm{LS}\\\\,}}_+\\\\)</span> operator on the fractional stable set polytope to compute the stable set polytope). We provide families of graphs whose <span>\\\\({{\\\\,\\\\textrm{LS}\\\\,}}_+\\\\)</span>-rank is asymptotically a linear function of its number of vertices, which is the best possible up to improvements in the constant factor. This improves upon the previous best result in this direction from 1999, which yielded graphs whose <span>\\\\({{\\\\,\\\\textrm{LS}\\\\,}}_+\\\\)</span>-rank only grew with the square root of the number of vertices.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02093-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02093-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了相对于 Lovász-Schrijver SDP 算子 \({{\,textrm{LS}\,}}_+\) 的图的稳定集多边形的升降级。特别是,我们专注于寻找具有较高 \({{\,\textrm{LS}\,}}_+\)-rank 的相对较小的图形(即在分数稳定集合多面体上计算稳定集合多面体的 \({{\,\textrm{LS}\,}}_+\) 算子的迭代次数最少)。我们提供了一些图族,这些图的({{\textrm{LS}\,}}_+\)rank 近似是其顶点数的线性函数,这是在常数因子改进之前的最佳结果。这改进了 1999 年在这个方向上的最佳结果,当时得到的图\({\textrm{LS}\,}_+\)-rank 只随顶点数的平方根增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator

Stable set polytopes with high lift-and-project ranks for the Lovász–Schrijver SDP operator

We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lovász–Schrijver SDP operator \({{\,\textrm{LS}\,}}_+\). In particular, we focus on a search for relatively small graphs with high \({{\,\textrm{LS}\,}}_+\)-rank (i.e., the least number of iterations of the \({{\,\textrm{LS}\,}}_+\) operator on the fractional stable set polytope to compute the stable set polytope). We provide families of graphs whose \({{\,\textrm{LS}\,}}_+\)-rank is asymptotically a linear function of its number of vertices, which is the best possible up to improvements in the constant factor. This improves upon the previous best result in this direction from 1999, which yielded graphs whose \({{\,\textrm{LS}\,}}_+\)-rank only grew with the square root of the number of vertices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信