刚性解析空间的改变局部均匀化

IF 0.8 2区 数学 Q2 MATHEMATICS
Bogdan Zavyalov
{"title":"刚性解析空间的改变局部均匀化","authors":"Bogdan Zavyalov","doi":"10.1007/s11856-024-2628-7","DOIUrl":null,"url":null,"abstract":"<p>We prove a version of Temkin’s local altered uniformization theorem. We show that for any rig-smooth, quasi-compact and quasi-separated admissible formal <span>\\({{\\cal O}_K}\\)</span>-model <span>\\(\\mathfrak{X}\\)</span>, there is a finite extension <i>K′</i>/<i>K</i> such that <span>\\({\\mathfrak{X}_{{{\\cal O}_{{K^\\prime }}}}}\\)</span> locally admits a rig-étale morphism <span>\\(g:{\\mathfrak{X}^\\prime } \\to {\\mathfrak{X}_{{{\\cal O}_{{K^\\prime }}}}}\\)</span> and a rig-isomorphism <span>\\(h:{\\mathfrak{X}^{\\prime \\prime }} \\to {\\mathfrak{X}^\\prime}\\)</span> with <span>\\({\\mathfrak{X}^\\prime }\\)</span> being a successive semi-stable curve fibration over <span>\\({{\\cal O}_{{K^\\prime }}}\\)</span> and <span>\\({\\mathfrak{X}^{\\prime \\prime }}\\)</span> being a polystable formal <span>\\({{\\cal O}_{{K^\\prime }}}\\)</span>-scheme. Moreover, <span>\\({\\mathfrak{X}^\\prime }\\)</span> admits an action of a finite group <i>G</i> such that <span>\\(g:{\\mathfrak{X}^\\prime } \\to {\\mathfrak{X}_{{{\\cal O}_{{K^\\prime }}}}}\\)</span> is <i>G</i>-invariant, and the adic generic fiber <span>\\(\\mathfrak{X}_{{K^\\prime }}^\\prime \\)</span> becomes a <i>G</i>-torsor over its quasi-compact open image <span>\\(U = {g_{{K^\\prime }}}(\\mathfrak{X}_{{K^\\prime }}^\\prime )\\)</span>. Also, we study properties of the quotient map <span>\\({\\mathfrak{X}^\\prime }/G \\to {\\mathfrak{X}_{{{\\cal O}_{{K^\\prime }}}}}\\)</span> and show that it can be obtained as a composition of open immersions and rig-isomorphisms.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Altered local uniformization of rigid-analytic spaces\",\"authors\":\"Bogdan Zavyalov\",\"doi\":\"10.1007/s11856-024-2628-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a version of Temkin’s local altered uniformization theorem. We show that for any rig-smooth, quasi-compact and quasi-separated admissible formal <span>\\\\({{\\\\cal O}_K}\\\\)</span>-model <span>\\\\(\\\\mathfrak{X}\\\\)</span>, there is a finite extension <i>K′</i>/<i>K</i> such that <span>\\\\({\\\\mathfrak{X}_{{{\\\\cal O}_{{K^\\\\prime }}}}}\\\\)</span> locally admits a rig-étale morphism <span>\\\\(g:{\\\\mathfrak{X}^\\\\prime } \\\\to {\\\\mathfrak{X}_{{{\\\\cal O}_{{K^\\\\prime }}}}}\\\\)</span> and a rig-isomorphism <span>\\\\(h:{\\\\mathfrak{X}^{\\\\prime \\\\prime }} \\\\to {\\\\mathfrak{X}^\\\\prime}\\\\)</span> with <span>\\\\({\\\\mathfrak{X}^\\\\prime }\\\\)</span> being a successive semi-stable curve fibration over <span>\\\\({{\\\\cal O}_{{K^\\\\prime }}}\\\\)</span> and <span>\\\\({\\\\mathfrak{X}^{\\\\prime \\\\prime }}\\\\)</span> being a polystable formal <span>\\\\({{\\\\cal O}_{{K^\\\\prime }}}\\\\)</span>-scheme. Moreover, <span>\\\\({\\\\mathfrak{X}^\\\\prime }\\\\)</span> admits an action of a finite group <i>G</i> such that <span>\\\\(g:{\\\\mathfrak{X}^\\\\prime } \\\\to {\\\\mathfrak{X}_{{{\\\\cal O}_{{K^\\\\prime }}}}}\\\\)</span> is <i>G</i>-invariant, and the adic generic fiber <span>\\\\(\\\\mathfrak{X}_{{K^\\\\prime }}^\\\\prime \\\\)</span> becomes a <i>G</i>-torsor over its quasi-compact open image <span>\\\\(U = {g_{{K^\\\\prime }}}(\\\\mathfrak{X}_{{K^\\\\prime }}^\\\\prime )\\\\)</span>. Also, we study properties of the quotient map <span>\\\\({\\\\mathfrak{X}^\\\\prime }/G \\\\to {\\\\mathfrak{X}_{{{\\\\cal O}_{{K^\\\\prime }}}}}\\\\)</span> and show that it can be obtained as a composition of open immersions and rig-isomorphisms.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2628-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2628-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了特姆金局部改变均匀化定理的一个版本。我们证明,对于任何严密光滑、准紧密和准分离的可容许形式 \({{\cal O}_K}\)- 模型 \(\mathfrak{X}\),存在一个有限扩展 K′/K,使得 \({\mathfrak{X}_{{\cal O}_{{K^\prime }}}}}\) 局部容许一个严密态变形 \(g. \mathfrak{X}_{{K^\prime }\to {\mathfrak{X}_{{K^\prime }\to {\mathfrak{X}_{{K^\prime }):{到 {\mathfrak{X}_{{cal O}_{{K^\prime }}}}}\) 和一个 rig-isomorphism (h:({\mathfrak{X}^{\prime}}\to{\mathfrak{X}^\prime}\),而 \({\mathfrak{X}^\prime }\) 是在\({\mathfrak{X}^\prime}\)上的连续半稳定曲线纤度。({{\cal O}_{{K^\prime }}}) 上的连续半稳定曲线纤度,并且 ({\mathfrak{X}^{prime \prime }}} 是一个多稳的形式 \({{\cal O}_{{K^\prime }}} -方案。而且,({\mathfrak{X}^\prime }\) 允许一个有限群 G 的作用,这样一来,(g:{to {\mathfrak{X}_{{{cal O}_{{K^\prime }}}}}\) 是 G 不变的、并且 adic 泛纤 \(\mathfrak{X}_{{K^\prime }}^\prime \)成为其准紧密开图像 \(U = {g_{K^\prime }}(\mathfrak{X}_{K^\prime }}^\prime )上的 G 托。此外,我们还研究了商映射({\mathfrak{X}^\prime }/G \to {\mathfrak{X}_{{\cal O}_{{K^\prime }}}}}\ )的性质,并证明它可以作为开放沉浸和 rig-isomorphisms 的组合而得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Altered local uniformization of rigid-analytic spaces

We prove a version of Temkin’s local altered uniformization theorem. We show that for any rig-smooth, quasi-compact and quasi-separated admissible formal \({{\cal O}_K}\)-model \(\mathfrak{X}\), there is a finite extension K′/K such that \({\mathfrak{X}_{{{\cal O}_{{K^\prime }}}}}\) locally admits a rig-étale morphism \(g:{\mathfrak{X}^\prime } \to {\mathfrak{X}_{{{\cal O}_{{K^\prime }}}}}\) and a rig-isomorphism \(h:{\mathfrak{X}^{\prime \prime }} \to {\mathfrak{X}^\prime}\) with \({\mathfrak{X}^\prime }\) being a successive semi-stable curve fibration over \({{\cal O}_{{K^\prime }}}\) and \({\mathfrak{X}^{\prime \prime }}\) being a polystable formal \({{\cal O}_{{K^\prime }}}\)-scheme. Moreover, \({\mathfrak{X}^\prime }\) admits an action of a finite group G such that \(g:{\mathfrak{X}^\prime } \to {\mathfrak{X}_{{{\cal O}_{{K^\prime }}}}}\) is G-invariant, and the adic generic fiber \(\mathfrak{X}_{{K^\prime }}^\prime \) becomes a G-torsor over its quasi-compact open image \(U = {g_{{K^\prime }}}(\mathfrak{X}_{{K^\prime }}^\prime )\). Also, we study properties of the quotient map \({\mathfrak{X}^\prime }/G \to {\mathfrak{X}_{{{\cal O}_{{K^\prime }}}}}\) and show that it can be obtained as a composition of open immersions and rig-isomorphisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信