Cheng Qian, Wenjuan Li, Shengxing Wei, Bo Sun, Yi Ren
{"title":"使用 WOA-XGBoost 代用模型对考虑了多源不确定性的叶轮进行疲劳可靠性评估","authors":"Cheng Qian, Wenjuan Li, Shengxing Wei, Bo Sun, Yi Ren","doi":"10.1002/qre.3584","DOIUrl":null,"url":null,"abstract":"When using Monte Carlo simulation involving repeated finite element analysis (FEA) to perform fatigue reliability evaluation for an impeller, a variety of uncertainties should be considered to ensure the comprehensiveness of fatigue predictions. These uncertainties include the aleatory uncertainty from the geometric, material and load condition, and epistemic uncertainty from the parameters of the physics‐of‐failure (PoF) model to yield fatigue prediction. However, the latter uncertainty is often ignored in fatigue reliability analysis. And the reliability assessment will become computationally unaffordable and inefficient when there are many random variables involved, as an enormous amount of FEAs are demanded. To address this problem, a Whale Optimization Algorithm‐extreme gradient boosting (WOA‐XGBoost) surrogate model is developed, based on relatively few FEA results obtained using a Latin hypercube sampling (LHS). Its strengths lie in the interpretability of the design variables and effective determination of fine‐tuned hyperparameters. A case study on an impeller is conducted considering uncertainties from 11 input variables, where an efficient XGBoost model with an <jats:italic>R</jats:italic><jats:sup>2</jats:sup> greater than 0.93 on test set is established using 400 samples from practical FEAs. In addition, the importance analysis indicates that elasticity modulus and density play the greatest impact on the maximum strain, showing a combined importance of 82.3%. Furthermore, the reliability assessment results under fatigue parameter derived from the Median method tend to be more conservative compared to those obtained from the Seeger method.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":"23 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue reliability evaluation for impellers with consideration of multi‐source uncertainties using a WOA‐XGBoost surrogate model\",\"authors\":\"Cheng Qian, Wenjuan Li, Shengxing Wei, Bo Sun, Yi Ren\",\"doi\":\"10.1002/qre.3584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When using Monte Carlo simulation involving repeated finite element analysis (FEA) to perform fatigue reliability evaluation for an impeller, a variety of uncertainties should be considered to ensure the comprehensiveness of fatigue predictions. These uncertainties include the aleatory uncertainty from the geometric, material and load condition, and epistemic uncertainty from the parameters of the physics‐of‐failure (PoF) model to yield fatigue prediction. However, the latter uncertainty is often ignored in fatigue reliability analysis. And the reliability assessment will become computationally unaffordable and inefficient when there are many random variables involved, as an enormous amount of FEAs are demanded. To address this problem, a Whale Optimization Algorithm‐extreme gradient boosting (WOA‐XGBoost) surrogate model is developed, based on relatively few FEA results obtained using a Latin hypercube sampling (LHS). Its strengths lie in the interpretability of the design variables and effective determination of fine‐tuned hyperparameters. A case study on an impeller is conducted considering uncertainties from 11 input variables, where an efficient XGBoost model with an <jats:italic>R</jats:italic><jats:sup>2</jats:sup> greater than 0.93 on test set is established using 400 samples from practical FEAs. In addition, the importance analysis indicates that elasticity modulus and density play the greatest impact on the maximum strain, showing a combined importance of 82.3%. Furthermore, the reliability assessment results under fatigue parameter derived from the Median method tend to be more conservative compared to those obtained from the Seeger method.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3584\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3584","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Fatigue reliability evaluation for impellers with consideration of multi‐source uncertainties using a WOA‐XGBoost surrogate model
When using Monte Carlo simulation involving repeated finite element analysis (FEA) to perform fatigue reliability evaluation for an impeller, a variety of uncertainties should be considered to ensure the comprehensiveness of fatigue predictions. These uncertainties include the aleatory uncertainty from the geometric, material and load condition, and epistemic uncertainty from the parameters of the physics‐of‐failure (PoF) model to yield fatigue prediction. However, the latter uncertainty is often ignored in fatigue reliability analysis. And the reliability assessment will become computationally unaffordable and inefficient when there are many random variables involved, as an enormous amount of FEAs are demanded. To address this problem, a Whale Optimization Algorithm‐extreme gradient boosting (WOA‐XGBoost) surrogate model is developed, based on relatively few FEA results obtained using a Latin hypercube sampling (LHS). Its strengths lie in the interpretability of the design variables and effective determination of fine‐tuned hyperparameters. A case study on an impeller is conducted considering uncertainties from 11 input variables, where an efficient XGBoost model with an R2 greater than 0.93 on test set is established using 400 samples from practical FEAs. In addition, the importance analysis indicates that elasticity modulus and density play the greatest impact on the maximum strain, showing a combined importance of 82.3%. Furthermore, the reliability assessment results under fatigue parameter derived from the Median method tend to be more conservative compared to those obtained from the Seeger method.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.