具有一般初始数据的全可压缩纳维尔-斯托克斯-科特韦格方程的低马赫数极限

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Kaige Hao, Yeping Li, Rong Yin
{"title":"具有一般初始数据的全可压缩纳维尔-斯托克斯-科特韦格方程的低马赫数极限","authors":"Kaige Hao, Yeping Li, Rong Yin","doi":"10.4310/dpde.2024.v21.n3.a4","DOIUrl":null,"url":null,"abstract":"In this paper, the low Mach number limit for the three-dimensional full compressible Navier-Stokes-Korteweg equations with general initial data is rigorously justified within the framework of local smooth solution. Under the assumption of large temperature variations, we first obtain the uniform-in- Mach-number estimates of the solutions in a $\\varepsilon$-weighted Sobolev space, which establishes the local existence theorem of the three-dimensional full compressible Navier-Stokes-Korteweg equations on a finite time interval independent of Mach number. Then, the low mach limit is proved by combining the uniform estimates and a strong convergence theorem of the solution for the acoustic wave equations. This result improves that of [K.-J. Sha and Y.-P. Li, Z. Angew. Math. Phys., 70(2019), 169] for well-prepared initial data.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Mach number limit of the full compressibleNavier-Stokes-Korteweg equations with general initial data\",\"authors\":\"Kaige Hao, Yeping Li, Rong Yin\",\"doi\":\"10.4310/dpde.2024.v21.n3.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the low Mach number limit for the three-dimensional full compressible Navier-Stokes-Korteweg equations with general initial data is rigorously justified within the framework of local smooth solution. Under the assumption of large temperature variations, we first obtain the uniform-in- Mach-number estimates of the solutions in a $\\\\varepsilon$-weighted Sobolev space, which establishes the local existence theorem of the three-dimensional full compressible Navier-Stokes-Korteweg equations on a finite time interval independent of Mach number. Then, the low mach limit is proved by combining the uniform estimates and a strong convergence theorem of the solution for the acoustic wave equations. This result improves that of [K.-J. Sha and Y.-P. Li, Z. Angew. Math. Phys., 70(2019), 169] for well-prepared initial data.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2024.v21.n3.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2024.v21.n3.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文在局部平稳解的框架内严格论证了具有一般初始数据的三维全可压缩纳维-斯托克斯-科特韦格方程的低马赫数极限。在温度变化较大的假设下,我们首先得到了$\varepsilon$加权Sobolev空间中解的均匀马赫数估计值,从而建立了三维全可压缩Navier-Stokes-Korteweg方程在与马赫数无关的有限时间区间上的局部存在定理。然后,结合声波方程解的均匀估计和强收敛定理,证明了低马赫极限。这一结果改进了 [K.-J. Sha and Y.-P. Li, Z. Angew. Math. Phys.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Mach number limit of the full compressibleNavier-Stokes-Korteweg equations with general initial data
In this paper, the low Mach number limit for the three-dimensional full compressible Navier-Stokes-Korteweg equations with general initial data is rigorously justified within the framework of local smooth solution. Under the assumption of large temperature variations, we first obtain the uniform-in- Mach-number estimates of the solutions in a $\varepsilon$-weighted Sobolev space, which establishes the local existence theorem of the three-dimensional full compressible Navier-Stokes-Korteweg equations on a finite time interval independent of Mach number. Then, the low mach limit is proved by combining the uniform estimates and a strong convergence theorem of the solution for the acoustic wave equations. This result improves that of [K.-J. Sha and Y.-P. Li, Z. Angew. Math. Phys., 70(2019), 169] for well-prepared initial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信