关于非形式算子上的卡多姆采夫-彼得维亚什维利层次的考奇问题及其与衍射群的关系

IF 1.1 3区 数学 Q2 MATHEMATICS, APPLIED
Jean-Pierre Magnot, Enrique G. Reyes
{"title":"关于非形式算子上的卡多姆采夫-彼得维亚什维利层次的考奇问题及其与衍射群的关系","authors":"Jean-Pierre Magnot, Enrique G. Reyes","doi":"10.4310/dpde.2024.v21.n3.a2","DOIUrl":null,"url":null,"abstract":"We establish a rigorous link between infinite-dimensional regular Frolicher Lie groups built out of non-formal pseudodifferential operators and the Kadomtsev-Petviashvili hierarchy. We introduce a (parameter-depending) version of the Kadomtsev-Petviashvili hierarchy on a regular Frölicher Lie group of series of non-formal odd-class pseudodifferential operators. We solve its corresponding Cauchy problem, and we establish a link between the dressing operator of our hierarchy and the action of diffeomorphisms and non-formal Sato-like operators on jet spaces. In appendix, we describe the group of Fourier integral operators in which this correspondence seems to take place. Also, motivated by Mulase’s work on the KP hierarchy, we prove a group factorization theorem for this group of Fourier integral operators.","PeriodicalId":50562,"journal":{"name":"Dynamics of Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Cauchy problem for a Kadomtsev-Petviashvili hierarchy on non-formal operators and its relation with a group of diffeomorphisms\",\"authors\":\"Jean-Pierre Magnot, Enrique G. Reyes\",\"doi\":\"10.4310/dpde.2024.v21.n3.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a rigorous link between infinite-dimensional regular Frolicher Lie groups built out of non-formal pseudodifferential operators and the Kadomtsev-Petviashvili hierarchy. We introduce a (parameter-depending) version of the Kadomtsev-Petviashvili hierarchy on a regular Frölicher Lie group of series of non-formal odd-class pseudodifferential operators. We solve its corresponding Cauchy problem, and we establish a link between the dressing operator of our hierarchy and the action of diffeomorphisms and non-formal Sato-like operators on jet spaces. In appendix, we describe the group of Fourier integral operators in which this correspondence seems to take place. Also, motivated by Mulase’s work on the KP hierarchy, we prove a group factorization theorem for this group of Fourier integral operators.\",\"PeriodicalId\":50562,\"journal\":{\"name\":\"Dynamics of Partial Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/dpde.2024.v21.n3.a2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/dpde.2024.v21.n3.a2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们在由非形式伪微分算子建立的无限维正则弗罗里赫列组和卡多姆采夫-彼得维亚什维利层次之间建立了严格的联系。我们在由非正奇类伪微分算子串联而成的正则弗罗利歇尔李群上引入了一个(取决于参数的)卡多姆采夫-彼得维亚什维利层次结构版本。我们求解了相应的考奇问题,并在层次结构的敷料算子与射流空间上的衍射和非形式萨托类算子的作用之间建立了联系。在附录中,我们描述了似乎发生这种对应关系的傅里叶积分算子组。此外,受穆拉塞关于 KP 层次的研究启发,我们证明了这个傅里叶积分算子群的群因子化定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Cauchy problem for a Kadomtsev-Petviashvili hierarchy on non-formal operators and its relation with a group of diffeomorphisms
We establish a rigorous link between infinite-dimensional regular Frolicher Lie groups built out of non-formal pseudodifferential operators and the Kadomtsev-Petviashvili hierarchy. We introduce a (parameter-depending) version of the Kadomtsev-Petviashvili hierarchy on a regular Frölicher Lie group of series of non-formal odd-class pseudodifferential operators. We solve its corresponding Cauchy problem, and we establish a link between the dressing operator of our hierarchy and the action of diffeomorphisms and non-formal Sato-like operators on jet spaces. In appendix, we describe the group of Fourier integral operators in which this correspondence seems to take place. Also, motivated by Mulase’s work on the KP hierarchy, we prove a group factorization theorem for this group of Fourier integral operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishes novel results in the areas of partial differential equations and dynamical systems in general, with priority given to dynamical system theory or dynamical aspects of partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信