几何及其他

Nikhil Byrapuram, Adam Ge, Selena Ge, Tanya Khovanova, Sylvia Zia Lee, Rajarshi Mandal, Gordon Redwine, Soham Samanta, Daniel Wu, Danyang Xu, Ray Zhao
{"title":"几何及其他","authors":"Nikhil Byrapuram, Adam Ge, Selena Ge, Tanya Khovanova, Sylvia Zia Lee, Rajarshi Mandal, Gordon Redwine, Soham Samanta, Daniel Wu, Danyang Xu, Ray Zhao","doi":"arxiv-2405.13054","DOIUrl":null,"url":null,"abstract":"In 2013, Conway and Ryba wrote a fascinating paper called Fibonometry. The\npaper, as one might guess, is about the connection between Fibonacci numbers\nand trigonometry. We were fascinated by this paper and looked at how we could\ngeneralize it. We discovered that we weren't the first. In this paper, we\ndescribe our journey and summarize the results.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibonometry and Beyond\",\"authors\":\"Nikhil Byrapuram, Adam Ge, Selena Ge, Tanya Khovanova, Sylvia Zia Lee, Rajarshi Mandal, Gordon Redwine, Soham Samanta, Daniel Wu, Danyang Xu, Ray Zhao\",\"doi\":\"arxiv-2405.13054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2013, Conway and Ryba wrote a fascinating paper called Fibonometry. The\\npaper, as one might guess, is about the connection between Fibonacci numbers\\nand trigonometry. We were fascinated by this paper and looked at how we could\\ngeneralize it. We discovered that we weren't the first. In this paper, we\\ndescribe our journey and summarize the results.\",\"PeriodicalId\":501462,\"journal\":{\"name\":\"arXiv - MATH - History and Overview\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - History and Overview\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.13054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2013 年,康威和雷巴撰写了一篇名为《斐波纳契》的精彩论文。正如人们所猜测的那样,这篇论文是关于斐波那契数和三角函数之间的联系。我们被这篇论文深深吸引,并研究如何将其推广。我们发现,我们并不是第一人。在这篇论文中,我们描述了我们的历程并总结了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fibonometry and Beyond
In 2013, Conway and Ryba wrote a fascinating paper called Fibonometry. The paper, as one might guess, is about the connection between Fibonacci numbers and trigonometry. We were fascinated by this paper and looked at how we could generalize it. We discovered that we weren't the first. In this paper, we describe our journey and summarize the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信