{"title":"帕斯卡三角形备注","authors":"Chaim Goodman-Strauss","doi":"arxiv-2405.13060","DOIUrl":null,"url":null,"abstract":"Through a series of elementary exercises, we explain the fractal structure of\nPascal's triangle when written modulo $p$ using an 1852 theorem due to Kummer:\nA prime $p$ divides $\\dfrac {n!}{i!j!} $ if and only if there is a carry in the\naddition $i+j=n$ when written in base $p$.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remark on Pascal's Triangle\",\"authors\":\"Chaim Goodman-Strauss\",\"doi\":\"arxiv-2405.13060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through a series of elementary exercises, we explain the fractal structure of\\nPascal's triangle when written modulo $p$ using an 1852 theorem due to Kummer:\\nA prime $p$ divides $\\\\dfrac {n!}{i!j!} $ if and only if there is a carry in the\\naddition $i+j=n$ when written in base $p$.\",\"PeriodicalId\":501462,\"journal\":{\"name\":\"arXiv - MATH - History and Overview\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - History and Overview\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.13060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Through a series of elementary exercises, we explain the fractal structure of
Pascal's triangle when written modulo $p$ using an 1852 theorem due to Kummer:
A prime $p$ divides $\dfrac {n!}{i!j!} $ if and only if there is a carry in the
addition $i+j=n$ when written in base $p$.