帕斯卡三角形备注

Chaim Goodman-Strauss
{"title":"帕斯卡三角形备注","authors":"Chaim Goodman-Strauss","doi":"arxiv-2405.13060","DOIUrl":null,"url":null,"abstract":"Through a series of elementary exercises, we explain the fractal structure of\nPascal's triangle when written modulo $p$ using an 1852 theorem due to Kummer:\nA prime $p$ divides $\\dfrac {n!}{i!j!} $ if and only if there is a carry in the\naddition $i+j=n$ when written in base $p$.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remark on Pascal's Triangle\",\"authors\":\"Chaim Goodman-Strauss\",\"doi\":\"arxiv-2405.13060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through a series of elementary exercises, we explain the fractal structure of\\nPascal's triangle when written modulo $p$ using an 1852 theorem due to Kummer:\\nA prime $p$ divides $\\\\dfrac {n!}{i!j!} $ if and only if there is a carry in the\\naddition $i+j=n$ when written in base $p$.\",\"PeriodicalId\":501462,\"journal\":{\"name\":\"arXiv - MATH - History and Overview\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - History and Overview\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.13060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过一系列基本练习,我们利用库默尔在 1852 年提出的一个定理来解释帕斯卡三角形在模数为 $p$ 时的分形结构:当且仅当一个素数 $p$ 在以 $p$ 为基数的加法中携带 $i+j=n$ 时,这个素数 $p$ 除以 $\dfrac {n!}{i!j!}当且仅当以 $p$ 为基数书写时,加法 $i+j=n$ 中有一个进位时,才会出现 $ddfrac{n!}{i!j!}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remark on Pascal's Triangle
Through a series of elementary exercises, we explain the fractal structure of Pascal's triangle when written modulo $p$ using an 1852 theorem due to Kummer: A prime $p$ divides $\dfrac {n!}{i!j!} $ if and only if there is a carry in the addition $i+j=n$ when written in base $p$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信